首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, isocratic, rapid and accurate reversed phase high performance liquid chromatography method was developed for the quantitative determination of tazarotene. The developed method is also applicable for the related substance determination in bulk drugs. The chromatographic separation was achieved on a Hypersil C18 (250 mm × 4.6 mm 5 μm) column using water pH 2.5 with orthophosphoric acid:acetonitrile (15:85, v/v) as a mobile phase. The chromatographic resolutions between tazarotene and its potential impurity A and B were found greater than three. The limit of detection and limit of quantification of impurities were found to be 25 and 75 ng mL−1. The percentage recovery of impurities in bulk drug sample was ranged from 96.8 to 103.5.The percentage recovery of tazarotene in bulk drug sample was ranged from 98.4 to 100.9. The developed RPLC method was validated with respect to linearity, accuracy, precision and robustness.  相似文献   

2.
A simple, isocratic, normal phase chiral HPLC method was developed and validated for the enantiomeric separation of repaglinide, (S)-(+)-2-ethoxy-4-N [1-(2-piperidinophenyl)-3-methyl-1-butyl] aminocarbonylmethyl] benzoic acid, an antidiabetic in bulk drug substance. The enantiomers of repaglinide were resolved on a ChiralPak AD-H (amylose based stationary phase) column using a mobile phase consisting of n-hexane: 2-propanol:trifluoroacetic acid (95:5:0.2 v/v/v) at a flow rate of 1.0 mL min−1. The resolution between the enantiomers was found to be not >3.5 in optimized method. The presence of trifluoroacetic acid in the mobile phase played an important role, in enhancing chromatographic efficiency and resolution between the enantiomers. The developed method was extensively validated and proved to be robust. The calibration curve for (R)-enantiomer showed excellent linearity over the concentration range of 900 ng mL−1 (LOQ) to 6,000 ng mL−1. The limit of detection and limit of quantification for (R)-enantiomer were 300 and 900 ng mL−1, respectively. The percentage recovery of the (R)-enantiomer ranged between 98.3 and 101.05% in bulk drug samples of repaglinide. Repaglinide sample solution and mobile phase were found to be stable up to 48 h. The developed method was found to be enantioselective, accurate, precise and suitable for quantitative determination of (R)-enantiomer in bulk drug substance.  相似文献   

3.
In the present study, a novel, fast and simple liquid chromatographic method was developed and validated for the simultaneous determination of rosiglitazone and metformin in pharmaceutical preparations. The separation was achieved on a phenyl column (250 × 4.6 mm i.d., 5 μm) using a mobile phase composed of acetonitrile:10.0 mM phosphate buffer pH 5.5 (70:30, v/v). The flow rate was 1 mL min−1. UV detection was performed at 245 nm and verapamil was used as internal standard. The developed method was validated in terms of stability, specificity, sensitivity, linearity, accuracy, precision and robustness. The limit of quantification was 0.02 μg mL−1 for both drugs. The method developed was successfully applied to the simultaneous determination of rosiglitazone and metformin in pharmaceutical preparations. The results were compared to two methods reported in the literature and no significant difference was found statistically.  相似文献   

4.
A sensitive and rapid liquid chromatographic method was successfully developed and validated for the determination of sibutramine hydrochloride in bulk and capsules. Sibutramine in the presence of its degradation products was analyzed using UV detection at 225 nm. Chromatography was performed on a reversed-phase C8 (150 × 4.0 mm I.D., 5 μm) analytical column under isocratic conditions. The mobile phase was composed of acetonitrile:water (aqueous phase containing 0.3% triethylamine and pH adjusted to 7.0) (75:25, v/v) at a flow-rate of 1.1 mL min−1. No chromatographic interference was found during the analysis. Light was the stress condition which most contributed to sibutramine degradation. The method showed a linear response (r > 0.999) from 30 to 90 μg mL−1. The mean recovery for capsules was 101.2%. Inter-day assays showed relative standard deviations of 0.42 and 1.62% for bulk and capsules, respectively. The developed method is able to separate sibutramine from its major degradation products and it may be used in the quality control of this active pharmaceutical ingredient in both bulk and capsules.  相似文献   

5.
Kinetics of the photocyclization of trans-8-styrylquinoline into 10a,10b-dihydronaphtho[1,2-h]quinoline (4-azachrysene) was studied in hexane. It was found that in addition to the expected two-step (two-quantum) route with trans-cis photoisomerization occurring in the first step with a quantum yield of φtc = 0.13 with consequent photocyclization of the cis-isomer with a quantum yield of 0.23. The direct singlequantum photocyclization of the trans-isomer with a quantum yield of 0.009 is also observed. The latter observation indicates that the excited trans-isomer isomerizes without loss of excitation to the excited cis-isomer, which then undergoes cyclization, i.e., the trans-cis photoisomerization proceeds partially by adiabatic mechanism t* → c*.  相似文献   

6.
A simple, rapid, and precise reversed-phase high-performance liquid chromatographic method has been developed for simultaneous determination of losartan potassium, ramipril, and hydrochlorothiazide. The three drugs were separated on a 150 mm × 4.6 mm i.d., 5 μm particle, Cosmosil C18 column. The mobile phase was 0.025 m sodium perchlorate–acetonitrile, 62:38 (v/v), containing 0.1% heptanesulphonic acid, pH adjusted to 2.85 with orthophosphoric acid, at a flow rate of 1.0 mL min−1. UV detection was performed at 215 nm. The method was validated for linearity, accuracy, precision, and limit of quantitation. Linearity, accuracy, and precision were acceptable in the ranges 35–65 μg mL−1 for losartan, 1.75–3.25 μg mL−1 for ramipril, and 8.75–16.25 μg mL−1 for hydrochlorothiazide.  相似文献   

7.
A simple, economic, selective, precise, and accurate high-performance liquid chromatographic (HPLC) method for the analysis of trimetazidine hydrochloride in both bulk drug and pharmaceutical formulations was developed and validated in the present study. The mobile phase consisted of water: methanol: triethylamine (75: 25: 0.1 v/v/v), and pH 3.3 was adjusted with orthophosphoric acid. This system was found to give a sharp peak of trimetazidine hydrochloride at a retention time of 3.375 ± 0.04 min. HPLC analysis of trimetazidine hydrochloride was carried out at a wavelength of 232 nm with a flow rate of 1.0 mL/min. The linear regression analysis data for the calibration curve showed a good linear relationship with a regression coefficient of 0.997 in the concentration range of 5–90 μg/mL. The linear regression equation was y = 35362x − 8964.2. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 3.6 and 10.9 μg/mL, respectively. The developed method was employed with a high degree of precision and accuracy for the analysis of trimetazidine hydrochloride. The developed method was validated for accuracy, precision, robustness, detection, and quantification limits as per the ICH guidelines. The wide linearity range, accuracy, sensitivity, short retention time, and composition of the mobile phase indicated that this method is better for the quantification of trimetazidine hydrochloride. The text was submitted by the authors in English.  相似文献   

8.
A simple and new isocratic normal phase chiral HPLC method has been developed for the determination of enantiomeric purity of pemetrexed disodium (l-enantiomer) in bulk drugs with a short run time of about 20 min. Chromatographic separation of l and d-enantiomers of pemetrexed disodium was achieved on an amylose based chiral stationary phase using a mobile phase consists of hexane, ethanol and trifluoro acetic acid. The resolution between the enantiomers was found to be more than 2.0. The system precision and method precision were found to be within 5% RSD for the distomer (d-enantiomer) at its specification level (i.e. not more than 1.0% w/w). The limit of detection and limit of quantification of distomer were 1.6 and 5 μg mL−1, respectively for 10 μL injection volume. The percentage recovery of distomer was ranged from 90.6 to 105.7 in bulk drug samples. The test solution was found to be stable in the diluent for 48 h. The method was found to be specific for the enantiomers of pemetrexed disodium and can be conveniently used for the quantification of undesired d-enantiomer present in the bulk drug samples of pemetrexed disodium.  相似文献   

9.
A new capillary gas chromatographic assay with nitrogen phosphorus detection for the determination of topiramate in the serum was developed and validated. The sample procedure included a liquid–liquid extraction of 0.1 mL of alkalized sample with ethyl acetate. The organic solvent was evaporated, and flash methylation of topiramate and internal standard 5-(p-methylphenyl)-5-phenylhydantoin with trimethylanilinium hydroxide (0.07 mol L−1 in methanol) was performed. The structure of derivatization product was confirmed using gas chromatography–mass spectrometry. Validation experiments certified suitability of bioanalytical method in the monitoring of serum concentrations in epileptic patients. The limit of detection was found to be 1.69 μmol L−1. The range of applicability and linearity was established from 4.35 to 69.62 μmol L−1. The accuracy and precision reached acceptable values from 86.15 to 109.5% (recovery) respectively, values were from 2.19 to 11.03% (RSD). No interference was found from endogenous substances or studied antiepileptic drugs.  相似文献   

10.
An enantioselective high-performance liquid chromatographic method, with precolumn derivatization with Marfey’s chiral reagent, sodium 2,4-dinitro-5-fluorophenyl-l-alanine amide, has been developed for resolution of the enantiomers of a new antiepileptic drug, pregabalin, in the bulk drug. The diastereomers of the pregabalin enantiomers were resolved to baseline on a reversed-phase ODS column with a 60:40 (v/v) mixture of aqueous 0.2% triethylamine (pH adjusted to 3.5 with dilute orthophosphoric acid) and acetonitrile as mobile phase. Resolution between the diastereomers was not less than five. The method was extensively validated and proved to be robust. The calibration plot was indicative of an excellent linear relationship between response and concentration over the range 750 (LOQ) to 7,500 ng L−1 for the R enantiomer. The limits of detection and quantification of the R enantiomer were 250 and 750 ng L−1, respectively, for an injection volume of 10 μL. Recovery of the R enantiomer from bulk drug samples of pregabalin ranged from 97.5 to 101.76%. Solutions of pregabalin in water and in the mobile phase were found to be stable for at least 48 h. The method was found to be suitable and accurate for quantitative determination of the R enantiomer in the bulk drug. It can be also used to test the stability of samples of pregabalin.  相似文献   

11.
A stability-indicating reversed-phase liquid chromatographic (RPLC) method has been established for analysis of ramipril (RAM) and moexipril hydrochloride (MOEX.HCl) in the presence of the degradation products generated in studies of forced decomposition. The drug substances were subjected to stress by hydrolysis (0.1 m NaOH and 0.1 m HCl), oxidation (30% H2O2), photolysis (254 nm), and thermal treatment (80 °C). The drugs were degraded under basic and acidic conditions and by thermal treatment but were stable under other stress conditions investigated. Successful separation of the drugs from the degradation products was achieved on a cyanopropyl column with 40:60 (v/v) aqueous 0.01 m ammonium acetate buffer (pH 6)–methanol as mobile phase at a flow rate of 1 mL min−1. Detection was by UV absorption at 210 nm. Response was a linear function of concentration over the range 5–50 μg mL−1 (r > 0.9995), with limits of detection and quantitation (LOD and LOQ) of 0.04 and 0.09 μg mL−1, respectively, for RAM and 0.014 and 0.32 μg mL−1, respectively, for moexipril. The method was validated for specificity, selectivity, solution stability, accuracy, and precision. Statistical analysis proved the method enabled reproducible and selective quantification of RAM and MOEX as the bulk drug and in pharmaceutical preparations. Because the method effectively separates the drugs from their degradation products, it can be used as stability-indicating.  相似文献   

12.
The simple, accurate and precise HPLC method for determination of Artesunate in bulk and tablet dosage form has been developed. Quantitation of drug was carried out on Jasco HPLC system with HiQ-SiL C8 column (250 mm × 4.6 mm i.d.), using acetonitrile: 1 M sodium acetate buffer (pH 3 adjusted with o-phosphoric acid) in the ratio 70: 30 as mobile phase. Method was developed using Artemether as internal standard and UV detector set at 220 nm. Linear concentration range was found to be 250–2500 μg/mL. The method has been successfully applied to the analysis of drugs in bulk and pharmaceutical formulation. The method was validated with respect to linearity, precision and accuracy as per the International Conference on Harmonisation guidelines.  相似文献   

13.
A. Önal 《Chromatographia》2006,64(7-8):459-461
A reversed-phase high-performance liquid chromatographic (HPLC) method with UV detection was developed and validated for the determination of ropinirole (ROP) in tablets. The assay utilized UV detection at 250 nm and a Luna CN column (250 × 4.6 mm I.D, 5 μm). The mobile phases were comprised of acetonitrile: 10 mM nitric acid (pH 3.0) (75:25, v/v). Validation experiments were performed to demonstrate linearity, accuracy, precision, limit of quantitation (LOQ), limit of detection (LOD), and robustness. The method was linear over the concentration range of 0.5–10.0 μg mL−1. The method showed good recoveries (99.75–100.20%) and the relative standard deviations of intra and inter-day assays were 0.38–1.69 and 0.45–1.95%, respectively. The method can be used for quality control assay of ropinirole.  相似文献   

14.
A simple and sensitive high‐performance liquid chromatographic procedure for the determination of the trans isomer of glimepiride is reported. Chromatography accomplished direct separation of the cis and trans isomers of glimepiride on a Dikmonsil C18 (250×4.6 mm, 5 μm) column with a mobile phase consisting of methanol‐acetonitrile‐NH4Ac buffer solution (1.5 mol L–1, pH = 4.5) (1.1 : 1.3 : 1.0, v/v) at a flow rate 0.5 mL min–1. The resolution (RS) was 1.73 with a retention time of 24.885 and 23.018 min for the cis and the trans isomer, respectively. A standard linear calibration curve was established for the trans isomer of glimepiride over the range of 4.95–198.00 μg mL–1 with a correlation coefficient of 0.99997. This method has been successfully used to analyze four different kinds of glimepiride product.  相似文献   

15.
For the first time, a simple, selective and accurate high-performance liquid chromatography method with ultraviolet detection was developed and validated to quantify simultaneously three structurally related antiepileptic drugs; carbamazepine, oxcarbazepine, and the recently launched eslicarbazepine acetate and their main metabolites, carbamazepine-10,11-epoxide, 10,11-trans-dihydroxy-10,11-dihydro-carbamazepine, and licarbazepine. The method involves a solid-phase extraction and a reverse-phase C18 column with 5 cm length. The mobile phase consisting of water, methanol, and acetonitrile in the ratio 64:30:6 was selected as the best one and pumped at 1 mL/min at 40 °C. The use of this recent column and an aqueous mobile phase instead of buffers gives several advantages over the method herein developed; namely the fact that the chromatographic analysis takes only 9 min. The method was validated according to the guidelines of the Food and Drug Administration, showing to be accurate (bias within ±12%), precise (coefficient variation <9%), selective and linear (r 2 > 0.997) over the concentration range of 0.05–30 μg/mL for carbamazepine; 0.05–20 μg/mL for oxcarbazepine; 0.15–4 μg/mL for eslicarbazepine acetate; 0.1–30 μg/mL for carbamazepine-10,11-epoxide; 0.1–10 μg/mL for 10,11-trans-dihydroxy-10,11-dihydro-carbamazepine, and 0.1–60 μg/mL for licarbazepine. It was also shown that this method can adequately be used for the therapeutic drug monitoring of the considered antiepileptic drugs, carbamazepine, oxcarbazepine, eslicarazepine acetate, and their metabolites.  相似文献   

16.
A reversed-phase liquid chromatographic method, optimised for the separation of trans-, and cis-resveratrol, catechin, epicatechin, quercetin and rutin, is reported. Separation was achieved using a C18 column and a gradient elution with acetonitrile and 5% formic acid aqueous solution. The analyses required an equilibration period of 10 min and a run time of 25 min for completion. Identification was based on retention characteristics and by relative UV spectra, obtained by photodiode array detector and were compared with commercial standards. Analyses were performed without any sample pre-treatment. Detection was carried out by UV–Vis detector at three different wavelengths. The detection limit ranged from 0.16 μgm L−1 (cis-resveratrol) to 1.5 μgm L−1 (+)-catechin. Investigation was extended to quantitative determination of phenol compounds in Italian red wine and to investigate the stability of the six antioxidants.  相似文献   

17.
Summary Direct reversed-phase high-performance liquid chromatographic methods were developed for the separation and identification of the enantiomers of mono- and bicyclic racemic β-amino acids:cis- andtrans-2-aminocyclopentane-1-carboxylic acids,cis- andtrans-2-aminocyclohexane-1-carboxylic acids,cis- andtrans-2-amino-4-cyclohexene-1-carboxylic acids,diendo- anddiexo-3-aminobicyclo[2.2.1]heptane-2-carboxylic acids anddiendo- anddiexo-3-amino-5-bicyclo[2.2.1]heptene-2-carboxylic acids. Enantioseparation was carried out by the application of a chiral stationary phase, Crownpak CR(+). The conditions of separation were optimized by changing the temperature, the flow rate and the pH of the mobile phase. Presented at: Balaton Symposium on High-Performance Separation Methods, Siófok, Hungary, September 3–5, 1997.  相似文献   

18.
A new simple isocratic chiral RP-LC method has been developed for the separation and quantification of the enantiomer of (R,R)-tadalafil in bulk drugs and dosage forms with an elution time of about 20 min. Chromatographic separation of (R,R)-tadalafil and its enantiomer was achieved on a bonded macro cyclic glycopeptide stationary phase. The method resolves the (R,R)-tadalafil and its enantiomer with a resolution (R s) greater than 2.4 in the developed chiral RP-LC. The mobile phase used for the separation and quantification of (R,R)-tadalafil and its enantiomer involves a simple mixture of reverse phase solvents and the cost of analysis was drastically decreased. The test concentration is 0.4 mg mL−1 in the mobile phase. This method is capable of detecting the enantiomer of (R,R)-tadalafil up to 0.0048 μg wrt test concentration 400 μg mL−1 for a 20 μL injection volume. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. There was no interference of degradants with (R,R)-tadalafil and its enantiomer in the developed method. The developed chiral RP-LC method was validated with respect to linearity, accuracy, precision and robustness. The percentage recovery for the enantiomer of (R,R)-tadalafil in bulk drug samples and in dosage forms ranged from 97.0 to 102.5%. The test solution was found to be stable in the mobile phase for 48 h after preparation.  相似文献   

19.
A novel stability-indicating high-performance liquid chromatographic assay method was developed and validated for quantitative determination of nitazoxanide in bulk drugs and in pharmaceutical dosage form in the presence of degradation products generated from forced decomposition studies. An isocratic, reversed phase LC method was developed to separate the drug from the degradation products, using an Ace5- C18 (250 mm × 4.6 mm, 5 μm) column, and 50 mM ammonium acetate (pH 5.5 by acetic acid) and acetonitrile (55:45 v/v) as a mobile phase. The detection was carried out at a wavelength of 240 nm. The nitazoxanide was subjected to stress conditions of hydrolysis (acid, base), oxidation, photolysis and thermal degradation. Degradation was observed for nitazoxanide in base, acid and in 30% H2O2 conditions. The drug was found to be stable in the other stress conditions attempted. The degradation products were well resolved from the main peak. The percentage recovery of nitazoxanide was from (100.55 to 101.25%) in the pharmaceutical dosage form. The developed method was validated with respect to linearity, accuracy (recovery), precision, system suitability, specificity and robustness. The forced degradation studies prove the stability indicating power of the method.  相似文献   

20.
To evaluate the pharmacokinetics of a novel analogue of ginkgolide B, 10-O-dimethylaminoethylginkgolide B (XQ-1) in rat plasma in pre-clinical studies, a sensitive and specific liquid chromatographic method with electrospray ionization mass spectrometry detection (LC–ESI–MS) was developed and validated. After a simple extraction with ethyl acetate, XQ-1 was analyzed on a Shim-pack C18 column with a mobile phase of a mixture of 1 μmol L−1 ammonium acetate containing 0.02% formic acid and methanol (55:45, v/v) at a flowrate of 0.3 mL min−1. Detection was performed in selected ion monitoring (SIM) mode using target ions at [M + H]+ m/z 496.05 for XQ-1 and m/z 432.10 for the internal standard (lafutidine). Linearity was established for the concentration range from 2 to 1,000 ng mL−1 . The extraction recoveries ranged from 86.0 to 89.9% in plasma at concentrations of 5, 50, and 500 ng mL−1. The lower limit of quantification was 2 ng mL−1 with 100 μL plasma. The validated method was successfully applied to a pharmacokinetic study after intragastic administration of XQ-1 mesylate in rats at a dose of 20 mg kg−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号