首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Seventeen laboratories from six different countries, using their usual in-house methods, participated in an interlaboratory comparison test for the determination of the Fusarium mycotoxins deoxynivalenol (DON) in wheat and zearalenone (ZON) in maize. The toxins generally were extracted from maize and wheat employing mixtures of water, acidified water with an organic solvent or even pure water (for DON). While participants who used enzyme linked immuno sorbent assays (ELISA) for the determination of DON did not perform any clean-up, various techniques were applied for the purification of raw extracts (e.g. liquid/liquid extraction, solid phase extraction (SPE), immuno affinity chromatography (IAC)). For the final separation/quantification step either high performance liquid chromatography (HPLC) (mostly for ZON), gas chromatography (GC) (for DON) or ELISA were employed by participants. The aim of this study was to obtain information about the state of the art of mycotoxin analysis in cereals and to support a knowledge and experience exchange between the participating laboratories in the field of mycotoxin analysis. For each mycotoxin 5 different sample types were distributed, standard solutions (10.10 μg/ml ZON in methanol, 10.09 μg/ml DON in ethyl acetate), blank materials, spiked samples (75.1 μg/kg and 378.3 μg/kg ZON in maize, 126.2 μg/kg and 2519 μg/kg DON in wheat) and naturally contaminated maize and wheat. Coefficients of variation (CV) between laboratory mean results (outliers excluded) ranged from 6.2 to 27.7% for ZON and from 18.9 to 30.0% for DON. Except for the maize samples spiked at 75.1 μg/kg ZON the overall means (outliers rejected) statistically could not be distinguished from the respective target values. Average recoveries of the reported results ranged from 87.7 to 96.2% for ZON and from 94.2 to 108.5% for DON.  相似文献   

2.
An indirect competitive enzyme linked immunoassay (ELISA) for the detection of the Fusarium mycotoxin deoxynivalenol (DON) in wheat was developed. Instead of the much more common antibody isolation from mammal serum, DON specific antibodies were, for the first time, isolated from the eggs of previously immunized hens. The limit of detection was 2 microg/L for standard curves and spiked wheat extracts. Recoveries for naturally contaminated samples (200-525 microg/kg) were between 80 and 125% compared with GC-ECD data. Concentrations for naturally contaminated samples were chosen with regard to current Austrian guidelines concerning DON levels in produce intended for human consumption, recommending a maximum of 500 microg DON/kg.  相似文献   

3.
Seventeen laboratories from six different countries, using their usual in-house methods, participated in an interlaboratory comparison test for the determination of the Fusarium mycotoxins deoxynivalenol (DON) in wheat and zearalenone (ZON) in maize. The toxins generally were extracted from maize and wheat employing mixtures of water, acidified water with an organic solvent or even pure water (for DON). While participants who used enzyme linked immuno sorbent assays (ELISA) for the determination of DON did not perform any clean-up, various techniques were applied for the purification of raw extracts (e.g. liquid/liquid extraction, solid phase extraction (SPE), immuno affinity chromatography (IAC)). For the final separation/quantification step either high performance liquid chromatography (HPLC) (mostly for ZON), gas chromatography (GC) (for DON) or ELISA were employed by participants. The aim of this study was to obtain information about the state of the art of mycotoxin analysis in cereals and to support a knowledge and experience exchange between the participating laboratories in the field of mycotoxin analysis. For each mycotoxin 5 different sample types were distributed, standard solutions (10.10 μg/ml ZON in methanol, 10.09 μg/ml DON in ethyl acetate), blank materials, spiked samples (75.1 μg/kg and 378.3 μg/kg ZON in maize, 126.2 μg/kg and 2519 μg/kg DON in wheat) and naturally contaminated maize and wheat. Coefficients of variation (CV) between laboratory mean results (outliers excluded) ranged from 6.2 to 27.7% for ZON and from 18.9 to 30.0% for DON. Except for the maize samples spiked at 75.1 μg/kg ZON the overall means (outliers rejected) statistically could not be distinguished from the respective target values. Average recoveries of the reported results ranged from 87.7 to 96.2% for ZON and from 94.2 to 108.5% for DON. Received: 2 December 1996 / Revised: 17 February 1997 / Accepted: 18 February 1997  相似文献   

4.
A simple and accurate method to quantify the mycotoxin deoxynivalenol (DON) in wheat is described. The method uses immunoaffinity chromatography for DON isolation and liquid chromatography (LC) for toxin detection and quantification. Wheat samples are extracted in water, filtered twice and applied to an immunoaffinity column. Following a water wash, DON is eluted from the column with methanol and injected onto an LC system with a UV detector for quantification. Test performance was evaluated in terms of antibody specificity, limit of detection, percentage recovery, precision, column capacity, assay linearity and comparison with the GC-electron-capture detection (ECD) method of Tacke and Casper. Specificity of the immunoaffinity column cleanup procedure was confirmed with only DON (>80%) and its 15-C derivatives (40-50%) being recognized by the antibody while 3-C DON derivatives, nivalenol, T-2 and fusarenon-X did not bind. The limit of detection is at least 0.10 microg/g. Percentage recovery for the entire assay range averages 90% with an average relative standard deviation of 8.3%. Naturally contaminated samples showed comparable precision. Column capacity was determined to be 3.3 microg. The assay showed a high degree of linearity (r2=0.999) and an optimum assay range of 0.10 to 10.0 microg/g. Comparative analysis of 28 naturally or artificially contaminated wheat samples using DONtest-HPLC and the GC-ECD method of Tacke and Casper showed that DONtest-HPLC is a statistically significant predictor of the GC-ECD method (r2=0.982).  相似文献   

5.
Deoxynivalenol (DON), commonly referred to as vomitoxin, belongs to a class of naturally occurring mycotoxins produced by Fusarium fungi. The presence of DON in foods is a human health concern. The frequency of occurrence of DON in wheat is high, although cleaning prior to milling can reduce DON concentration in final products, and food processing can partially degrade the toxin. This paper describes a method for the determination of DON in some major wheat food products, including bread, breakfast cereals, pasta, pretzels, and crackers. Test samples containing 5% polyethylene glycol were extracted with water. After blending and centrifuging, the supernatant was diluted with water and filtered through glass microfiber filter paper. The filtrate was then passed through an immunoaffinity column and the toxins eluted with methanol. The toxins were then subjected to RPLC separation and UV detection. The accuracy and repeatability characteristics of the method were determined. Recoveries of DON spiked at levels from 0.5 to 1.5 microg/g in the five processed foods were >70%. SD and RSD values ranged from 2.0 to 23.5% and from 2.0 to 23.2%, respectively. HorRat values were <2 for all of the matrixes examined. The method was found to be acceptable for the matrixes examined. LC/MS/MS with multiple-reaction monitoring was used to confirm the identity of DON in naturally contaminated test samples.  相似文献   

6.
Three long and 1 short reversed-phase C18 columns were compared for separation of deoxynivalenol (DON) in extracts of naturally contaminated wheat samples using liquid chromatography with ultraviolet detection and liquid chromatography/mass spectrometry (LC/MS). Among the 3 long columns used, a Symmetry C18 column with an isocratic solvent mixture of water-acetonitrile-methanol (90 + 5 + 5, v/v/v) gave the best separation for DON without interferences from other compounds in the wheat extracts. The Symmetry short (75 mm) column was comparable with the long column (250 mm) in resolving DON but significantly reduced retention time (i.e., 5.8 versus 16.3 min). Increasing the column temperature from 25 to 45 degrees C resulted in a further reduction in retention time. Identity of DON in the wheat extracts and standard solutions was confirmed by LC/MS in the positive ion mode, whereby DON appeared with an (M+1)+ ion at a mass-to-charge ratio of 297 plus fragment ions associated with loss of water and/or a 30 atomic mass unit (amu) CH2O fragment. The Symmetry short column was also capable of separating a mixture of the mycotoxins DON, 15-acetyl-DON, nivalenol, and zearalenone by use of a combination of an isocratic and gradient solvent system. The overall method showed high precision, exhibiting a relative standard deviation of 4.8%, limit of detection of 50 ng/g, and limit of quantitation of 165 ng/g. It was significantly correlated with enzyme-linked immunosorbent assay analysis, indicating its appropriateness for safety and quality assurance of wheat and related grains.  相似文献   

7.
The significance of laboratory sample preparation for the determination of two important mycotoxins, ochratoxin A (OTA) and deoxynivalenol (DON), in wheat was investigated by comparing water-slurry mixing and dry-milling procedures. The distribution of OTA and DON in 10 kg samples of naturally contaminated wheat was established by analyzing one hundred 100 g subsamples of each sample. A normal distribution and a good repeatability of DON measurements was observed for both water-slurry mixing (mean 2290 microg/kg, CV 4.6%, median 2290 microg/kg) and dry milling (mean 2310 microg/kg, CV 6.4%, median 2290 microg/kg) procedures. For OTA determinations, reliable results could be obtained only by slurry mixing sample preparation (mean 2.62 microg/kg, CV 4.0%, median 2.62 microg/kg), whereas dry-milling comminution resulted in an inhomogeneous distribution with a high variability (mean 0.83 microg/kg, CV 75.2%, median 0.60 microg/kg) and a positive skewness (2.12). Ad hoc experiments were performed on different size portions of the same sample (10 kg) to assess accuracy and precision of the comminution/homogenization procedures (slurry mixing and dry milling). Very good results were obtained for DON determination with both procedures in terms of accuracy (>98.7% of the "weighted value") and precision (CV <3%). For OTA determination good results were only obtained by slurry mixing (99.4% of the "weighted value," CV 10%), whereas dry milling provided results with low accuracy (43.2% of the "weighted value") and high variability (CV 110%). This study clearly demonstrated that sample preparation by slurry mixing is strictly necessary to obtain reliable laboratory samples for OTA determination in wheat to minimize misclassification of acceptable/rejectable lots, mainly within official control.  相似文献   

8.
A rapid method for the analysis of deoxynivalenol (DON) was developed using high-performance liquid chromatography (HPLC) with reductive electrochemical detection (ED). Deoxynivalenol produced by Fusarium roseum growing on solid cornmeal and rice substrates and from naturally contaminated wheat was extracted and quantitated via ED. DON levels in wheat were verified by gas chromatography and structurally confirmed by mass spectrometry. DON was optimally resolved by HPLC employing a radially compressed octadecylsilane column and a mobile phase of deoxygenated methanol-40 mM borate buffer (35:65) at a flow-rate of 1.0 ml/min. Under these conditions DON exhibited an average retention time of 3.6 min. Reductive ED (-1.4 V) allowed a 12-fold increase in sensitivity and greater selectivity than classical UV absorption at 224 nm. A detection limit for DON of 25 pg/microliter was achieved under these conditions. The determination of DON in crude grain extracts was hindered by extractable interfering substances, whereas ED was more functional-group selective (i.e. reduction of the carbonyl moiety). ED permits a direct quantitation of DON from crude grain extracts and may facilitate the determination of this agent and associated metabolites in biological samples.  相似文献   

9.
Quenchbody (Q-body) is a novel fluorescent biosensor based on the antigen-dependent removal of a quenching effect on a fluorophore attached to antibody domains. In order to develop a method using Q-body for the quantitative determination of deoxynivalenol (DON), a trichothecene mycotoxin produced by some Fusarium species, anti-DON Q-body was synthesized from the sequence information of a monoclonal antibody specific to DON. When the purified anti-DON Q-body was mixed with DON, a dose-dependent increase in the fluorescence intensity was observed and the detection range was between 0.0003 and 3 mg L−1. The coefficients of variation were 7.9% at 0.003 mg L−1, 5.0% at 0.03 mg L−1 and 13.7% at 0.3 mg L−1, respectively. The limit of detection was 0.006 mg L−1 for DON in wheat. The Q-body showed an antigen-dependent fluorescence enhancement even in the presence of wheat extracts. To validate the analytical method using Q-body, a spike-and-recovery experiment was performed using four spiked wheat samples. The recoveries were in the range of 94.9–100.2%. The concentrations of DON in twenty-one naturally contaminated wheat samples were quantitated by the Q-body method, LC-MS/MS and an immunochromatographic assay kit. The LC-MS/MS analysis showed that the levels of DON contamination in the samples were between 0.001 and 2.68 mg kg−1. The concentrations of DON quantitated by LC-MS/MS were more strongly correlated with those using the Q-body method (R2 = 0.9760) than the immunochromatographic assay kit (R2 = 0.8824). These data indicate that the Q-body system for the determination of DON in wheat samples was successfully developed and Q-body is expected to have a range of applications in the field of food safety.  相似文献   

10.
The paper describes a sample clean-up method for the co-isolation of deoxynivalenol (DON) and zearalenone (ZON), two mycotoxins naturally co-occurring in wheat. The method is based on immunoaffinity columns prepared by co-immobilising anti-DON and anti-ZON antibodies in a porous sol–gel glass. The main task in developing the method consisted in finding a loading medium allowing retention of both analytes as well as a common elution medium for the dissociation of both antigen–antibody complexes formed. This can be achieved by co-extracting DON and ZON with ACN–water (60:40, v/v), reducing the acetonitril concentration to 2.5% before loading an aliquot of the diluted sample extract onto the DON/ZON column. The columns are washed with 5 ml of MeOH–water (10:90, v/v) before DON and ZON are co-eluted with 4 ml of ACN–water (50:50, v/v). Concentrations of DON and ZON are determined with HPLC-UV and HPLC-fluorescence detection, respectively. The sample clean-up method was shown to be applicable to wheat and wheat products, e.g., cornflakes, milk wheat mash and rusk. Spiking experiments (spike level 500 μg DON/kg and 50 μg ZON/kg) resulted in recovery rates from 82% to 111%.  相似文献   

11.
Competitive electrochemical enzyme-linked immunosorbent assays based on disposable screen-printed electrodes have been developed for quantitative determination of ochratoxin A (OTA). The assays were carried out using monoclonal antibodies in the direct and indirect format. OTA working range, I50 and detection limits were 0.05-2.5 and 0.1-7.5 μg L−1, 0.35 (±0.04) μg L−1 and 0.9 (±0.1) μg L−1, 60 and 100 μg L−1 in the direct and indirect assay format, respectively. The immunosensor in the direct format was selected for the determination of OTA in wheat. Samples were extracted with aqueous acetonitrile and the extract analyzed directly by the assay without clean-up. The I50 in real samples was 0.2 μg L−1 corresponding to 1.6 μg/kg in the wheat sample with a detection limit of 0.4 μg/kg (calculated as blank signal −3σ). Within- and between-assay variability were less than 5 and 10%, respectively. A good correlation (r = 0.9992) was found by comparative analysis of naturally contaminated wheat samples using this assay and an HPLC/immunoaffinity clean-up method based on the AOAC Official Method 2000.03 for the determination of OTA in barley.  相似文献   

12.
An investigation into the rapid detection of mycotoxin-producing fungi on corn by two mid-infrared spectroscopic techniques was undertaken. Corn samples from a single genotype (RWA2, blanks, and contaminated with Fusarium graminearum) were ground, sieved and, after appropriate sample preparation, subjected to mid-infrared spectroscopy using two different accessories (diffuse reflection and attenuated total reflection). The measured spectra were evaluated with principal component analysis (PCA) and the blank and contaminated samples were classified by cluster analysis. Reference data for fungal metabolites were obtained with conventional methods. After extraction and clean-up, each sample was analyzed for the toxin deoxynivalenol (DON) by gas chromatography with electron capture detection (GC-ECD) and ergosterol (a parameter for the total fungal biomass) by high-performance liquid chromatography with diode array detection (HPLC-DAD). The concentration ranges for contaminated samples were 880–3600 g/kg for ergosterol and 300–2600 g/kg for DON. Classification efficiency was 100% for ATR spectra. DR spectra did not show as obvious a clustering of contaminated and blank samples. Results and trends were also observed in single spectra plots. Quantification using a PLS1 regression algorithm showed good correlation with DON reference data, but a rather high standard error of prediction (SEP) with 600 g/kg (DR) and 490 g/kg (ATR), respectively, for ergosterol. Comparing measurement procedures and results showed advantages for the ATR technique, mainly owing to its ease of use and the easier interpretation of results that were better with respect to classification and quantification.  相似文献   

13.
In this study, ten Fusarium toxins were analysed in wheat and maize commodities from Albania. In total, 71 samples of wheat and 45 samples of maize were collected from different producing regions. The analytical procedure consisted of a simple one-step sample extraction followed by the determination of toxins using liquid chromatography coupled with tandem mass spectrometry. Fusarium toxins were found in 23% of the analysed wheat samples and in 78% of maize samples. In maize samples, most often fumonisins B1 (FB1) and B2 (FB2) were found. They were present in 76% of samples. They were detected in all positive samples except in one with concentrations ranging from 59.9 to 16,970 μg/kg. The sum of FB1 and FB2 exceeded the EU maximum permitted level (4000 μg/kg) in 31% of maize samples. In wheat samples, the only detected Fusarium mycotoxin was deoxynivalenol (DON), present in 23% of samples. In one sample with the concentration of 1916 μg/kg, the EU maximum permitted level (1250 μg/kg) was exceeded. This is the first report on the presence of Fusarium toxins in wheat and maize grains cultivated in Albania.  相似文献   

14.
The analytical performances of a novel DNA-ligand system using the time-resolved fluorescence (TRF) response of ochratoxin A (OTA)-terbium-DNA aptamer interaction were tested for the quantitative determination of OTA in wheat. Wheat was extracted with acetonitrile/water (60:40, v/v) followed by clean-up through affinity columns containing a DNA-aptamer-based oligosorbent. Then, OTA was detected by TRF spectroscopy after reaction with a terbium fluorescent solution containing the DNA-aptamer probe. The entire procedure was performed in less than 30 min, including sample preparation, and allowed analysis of several samples simultaneously with a 96-well microplate reader. The average recovery from samples spiked with 2.5-25 μg kg(-1) OTA was 77%, with a relative standard deviation lower than 6% and a quantification limit of 0.5 μg kg(-1). Comparative analyses of 29 naturally contaminated (up to 14 μg kg(-1)) wheat samples using the aptamer-affinity column/TRF method or the immunoaffinity column/high-performance liquid chromatography method showed good correlation (r = 0.985) in the range tested. The trueness of the aptamer-based method was additionally assessed by analysis of two quality control wheat materials for OTA. The DNA-ligand system is innovative, simple and rapid, and can be used to screen large quantities of samples for OTA contamination at levels below the EU regulatory limit with analytical performances satisfying EU criteria for method acceptability.  相似文献   

15.
A prototype imaging surface plasmon resonance-based multiplex microimmunoassay for mycotoxins is described. A microarray of mycotoxin–protein conjugates was fabricated using a continuous flow microspotter device. A competitive inhibition immunoassay format was developed for the simultaneous detection of deoxynivalenol (DON) and zearalenone (ZEN), using a single sensor chip. Initial in-house validation showed limits of detection of 21 and 17 ng/mL for DON and 16 and 10 ng/mL for ZEN in extracts, which corresponds to 84 and 68 μg/kg for DON and 64 and 40 μg/kg for ZEN in maize and wheat samples, respectively. Finally, the results were critically compared with data obtained from liquid chromatography-mass spectrometry confirmatory analysis method and found to be in good agreement. The described multiplex immunoassay for the rapid screening of several mycotoxins meets European Union regulatory limits and represents a robust platform for mycotoxin analysis in food and feed samples.  相似文献   

16.
Fusarium species, a plant pathogenic fungus of wheat and other cereals, produces toxic metabolites such as nivalenol (NIV) and deoxynivalenol (DON). Control of contamination by these toxins is very difficult, and a continuous survey of the occurrence is necessary for these toxins. Thus, the accurate and convenient determination of the cereals contaminated with these toxins is important for the supply of safe foods. A selective analytical method based on high‐performance liquid chromatography, combined with atmospheric pressure photoionization (APPI) mass spectrometry, has been developed for simultaneous determination of NIV and DON. The parameters investigated for the optimization of APPI were the ion source parameters fragmentor voltage, capillary voltage, and vaporizer temperature, and also mobile phase composition and flow rate. Furthermore, chemical noise and signal suppression of analyte signals due to sample matrix interference were investigated for APPI. The results indicated that APPI provides lower matrix effect and the correlation coefficient of NIV and DON in the range 0.2–100 ng · mL?1 was above 0.999. Recoveries of NIV and DON in wheat ranged from 86 to 107% and limits of detection of NIV and DON were 0.20 ng · g?1 and 0.39 ng · g?1, respectively. In addition, the proposed method was applied for the analysis of naturally contaminated wheat samples. APPI was found to offer lower matrix effect and was a convenient technique for routine analysis of NIV and DON residues in wheat at trace levels. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
采用液相色谱-串联质谱建立了小麦中T-2、玉米赤霉烯酮(ZEN)和脱氧镰刀菌烯醇(DON)的测定方法。样品经80% 乙腈-水提取,氨基柱(500 mg,6 mL)杂质吸附模式净化,以5 mmol/L乙酸铵溶液和甲醇为流动相,ZORBAX Extend-C18柱(150 mm×2.1 mm,1.8 μm)进行色谱分离;在电喷雾正离子化模式下,多反应监测方式测定。结果表明:T-2、ZEN和DON分别在0.5~500、5~500、10~2 000 μg/L质量浓度范围内呈良好线性,相关系数分别为0.998 9、0.999 7和0.999 1。通过对空白小麦样品进行3个水平的加标回收实验,T-2、ZEN和DON的回收率分别为86%~94%、80%~101%和81%~105%,相对标准偏差(RSD)分别为2.6%~5.5%、3.6%~8.9%和2.2%~8.1%,方法检出限分别为0.5、8.0、10.0 μg/kg。该方法准确、灵敏、成本低,适用于小麦中T-2、ZEN和DON的同时分析。  相似文献   

18.
Deoxynivalenol (DON), also known as vomitoxin, belongs to a class of naturally occurring mycotoxins produced by Fusarium spp. DON, 12, 13-epoxy-3,7 trihydroxytrichothec-9-en-8-one, is one of the most frequently detected mycotoxins in agricultural commodities worldwide. A method consisting of extraction, filtration, column cleanup, and RP-HPLC-UV separation and quantitation was validated for the determination of DON in grains (rice and barley), grain products (whole wheat flour, white flour, wheat germ, and wheat bran), and processed foods (bread, breakfast cereals, and pretzels). A 25 g test portion was extracted with 100 mL acetonitrile-water (84 + 16, v/v). After blending for 3 min, the supernatant was applied to a multifunctional column (MycoSep 225). The purified filtrate (2 mL) was evaporated to dryness and redissolved in the mobile phase. The toxins were then subjected to RP-HPLC-UV analysis. The accuracy and repeatability characteristics of the method were determined. Recoveries of DON added at levels ranging from 0.5 to 1.5 microg/g for all test matrixes were from 75 to 98%. SD and RSD(r) ranged from 0.7 to 11.6% and 0.9 to 12.7%, respectively. Within-laboratory HorRat values were from 0.1 to 0.7 for all matrixes analyzed. The method was found to meet AOAC method performance criteria for grains, grain products, and processed foods. The identity of DON in naturally contaminated test sample extracts was confirmed by HPLC/MS/MS analysis.  相似文献   

19.
A liquid chromatographic (LC) method was developed for determining deoxynivalenol (DON) in whole wheat flour and wheat bran. A 15 g test sample was extracted with acetonitrile-water (84 + 16, v/v) and applied to a Romer MycoSep cleanup column. The eluate was dried and then reconstituted in a 0.1 M phosphate buffer, pH 7.0, and applied to a Vicam DONtest-LC cleanup column. The methanol eluate was chromatographed with a methanol-water (17 + 83, v/v) mobile phase on a C18 column with UV detection at 220 nm. Five replicates at each of 5 fortification levels (0.25, 0.50, 1.0, 2.0, and 4.0 ppm), plus 5 controls, were determined for both whole wheat flour and wheat bran. For flour, the average recoveries were 72.2-91.5% with relative standard deviations (RSDs) of 4.9-18.4%. The intra-assay flour recovery was 82.4% with 9.8% RSD. A 5 replicate sample of naturally incurred wheat had an average of 1.1 ppm DON with 6.7% RSD. For bran, average recoveries of fortified samples were 69.5-99.7% with RSDs of 1.7-18.8%. The intra-assay bran recovery was 81.5% with 8.9% RSD. The limit of detection (about 3x noise) for the method is 0.05 ppm; the correlation coefficient (linearity) was >0.9995. The DON peak was clearly identified and easily integrated in the chromatograms.  相似文献   

20.
陈明明  苏毕航  黄建立  付凤富  董永强 《色谱》2022,40(11):1039-1046
利用便携式拉曼光谱仪建立了一个快速筛查与检测谷物中真菌毒素脱氧雪腐镰刀菌烯醇(DON)的表面增强拉曼散射(SERS)方法。首先利用实验室前期开发的方法制备了具有高活性的水凝胶SERS芯片。该SERS芯片是将预先制备的高SERS活性的单层碳基点(CDs)包裹的银纳米颗粒团聚体(a-AgNPs/CDs)与聚乙烯醇(PVA)水溶液混合均匀后,再利用循环冷冻-解冻的物理交联法制备而成的。实验优化了影响水凝胶SERS芯片对DON的SERS响应的实验条件,包括溶剂、浸泡温度和浸泡时间。在最佳的SERS检测条件下(溶剂为水-乙醇(1:1, v/v),浸泡温度为40 ℃,浸泡时间为5 min), DON的线性响应范围为1~10000 μg/kg(相关系数(R2)=0.9967),检出限(LOD)为0.14 μg/kg,表明该SERS基底具有较高的灵敏度。得益于水凝胶特殊的孔径结构,实际样品基质中常见的糖、蛋白质、油脂、色素等干扰物质都被阻隔在水凝胶外。因此,在复杂样品检测中仅需要简单的提取,而不需要复杂的分离处理。将该方法用于小麦粉中DON的检测,所得回收率为97.3%~103%,相对标准偏差为4.2%~5.0%。实验结果表明所建立的检测DON的SERS方法具有响应范围宽、灵敏度高、重复性好、响应迅速、操作简单、抗干扰能力强等优点,这说明本实验室所构建的水凝胶SERS芯片在粮食中生物毒素的快速筛查与检测方面具有良好的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号