首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the study was to optimise analytical methods for determination of the chemical speciation of mercury in studies of protective mechanisms of selenium. Optimisation of the methods was performed using CRM DOLT-2 (Dogfish liver), both in its original form and after separation of various fractions. The sample was homogenised with 10 mM Tris-HCl buffer (pH 7.6) and ultracentrifuged. The soluble phase obtained was applied to a size exclusion chromatography column (Sephadex G-75 column) for separation of various protein fractions. Total mercury (total Hg), monomethyl mercury (MeHg) and selenium (Se) were determined in whole dogfish liver tissue and its soluble and insoluble phases (pellet). Different approaches for determination of total Hg and MeHg were compared. Simultaneous determination of MeHg and inorganic mercury (Hg2+) was based on alkaline dissolution and/or acid leaching, followed by ethylation, room temperature precollection, isothermal gas chromatography (GC), pyrolysis and detection with cold vapour atomic fluorescence spectrometry (CVAFS). The sum of MeHg and Hg2+ was compared to total Hg results obtained by acid digestion and CVAAS detection. The accuracy of MeHg determination was checked by its determination using acid leaching at room temperature, solvent extraction, back extraction into Milli-Q water, ethylation, GC and CVAFS detection. For the insoluble phase it is recommended to use solvent extraction for MeHg and acid digestion CVAAS for total Hg. For determination of MeHg and Hg2+ in the lyophilised sample and water soluble fractions containing low concentrations of mercury species, the simultaneous measurement of MeHg and Hg2+ after alkaline dissolution is the most appropriate method.  相似文献   

2.
A simple and sensitive method has been developed for determination of inorganic and methyl mercury in biological samples by ETAAS. For determination of methyl mercury; it was transferred to toluene phase by acid leaching extraction method. For total mercury after digestion of samples; it was extracted to toluene phase by means of the chelating agent diethyldithiocarbamate. Formation of complex between MeHg and diethyldithiocarbamate enhance the MeHg signal and increases the reproducibility. Furthermore, Pd-DDC was used as modifier for both mercury and methyl mercury determinations. The optimization performance was independently carried out by modifying the parameters such as temperature of mineralization, atomization and gas flow rate for methylmercury and inorganic mercury in ETAAS. The limits of detection were 0.15 and 0.12 μg g−1 for methyl mercury and total mercury, respectively. The repeatability of the measurements of whole procedure were 15.8% for methyl mercury and 16.9% for total mercury determination. The accuracy of the method has been investigated by means of spiking different amounts of methylmercury and inorganic mercury to the samples. The recoveries were found within the range of 88-95% for methyl mercury and 85-92% for total mercury. For determination of total mercury, the method was validated by CVAAS. The obtained results by the present procedure were in good agreement with those of the CVAAS. The proposed method was applied for 30 human permanent healthy teeth (without filling) which significant positive correlations were found among number of amalgam filling and total mercury and MeHg.  相似文献   

3.
4.
建立了微波萃取高效液相色谱-冷原子荧光光谱法(MAE-HPLC-CVAFS)测定沉积物中甲基汞(MeHg+)和无机汞(Hg2+)的方法。以0.1%(V/V)2-巯基乙醇为萃取剂,用于沉积物样品中汞形态的萃取,在80℃下萃取8 min,萃取液直接注入HPLC-CVAFS系统分析。在优化条件下,MeHg+和Hg2+的检出限分别为0.58和0.48 ng/g;加标回收率分别为96.2%和95.8%;RSD(n=6)分别为5.7%和4.1%。对标准参考物质(IAEA-405和ERM-CC580)的分析结果与推荐值一致。本方法简单、快速、准确、检出限低,抗干扰能力强,具有很好的实用性和推广价值。  相似文献   

5.
《Analytical letters》2012,45(9):1691-1699
Abstract

Four kinds of mercury species (inorganic mercury (Hginorg), methylmercury (MeHg), total organic mercury (ΣHgorg), and insoluble mercury, deemed to be mercuric selenide (HgSe), were determined in the livers of dolphins from the Brazilian coast. The MeHg was identified and quantified in the toluene layer on a Gas Chromatograph with an Electron Capture Detector (GC-ECD). The ΣHgorg was isolated by acid leaching (H2SO4-KBr-CuSO4) and then extracted into CH2Cl2. The ΣHgorg and Hginorg were determined by Cold-Vapor Atomic Absorption Spectroscopy (CV-AAS). The MeHg was the smallest fraction of Hgtot, with a median of 9%, whereas the highest fraction of the Hgtot was as HgSe, corresponding to 53%. The fractions of Hginorg and ΣHgorg corresponded to 30% and 39%, respectively. The lowest fraction of MeHg and the highest fraction of HgSe in the liver of all animals are related to different capacities or strategies of detoxification of methylmercury in this organ.  相似文献   

6.
Mercury tracers are powerful tools that can be used to study mercury transformations in environmental systems, particularly mercury methylation, demethylation and reduction in sediments and water. However, mercury transformation studies using tracers can be subject to error, especially when used to assess methylation potential. The organic mercury extracted can be as low as 0.01% of the endogenous labeled mercury, and artefacts and contamination present during methylmercury (MeHg) extraction processes can cause interference. Solvent extraction methods based on the use of either KBr/H2SO4 or HCl were evaluated in freshwater sediments using 197Hg radiotracer. Values obtained for the 197Hg tracer in the organic phase were up to 25-fold higher when HCl was used, which is due to the coextraction of 197Hg2+ into the organic phase during MeHg extraction. Evaluations of the production of MeHg gave similar results with both MeHg extraction procedures, but due to the higher Hg2+ contamination of the controls, the uncertainty in the determination was higher when HCl was used. The Hg2+ contamination of controls in the HCl extraction method showed a nonlinear correlation with the humic acid content of sediment pore water. Therefore, use of the KBr/H2SO4 method is recommended, since it is free from these interferences. 197Hg radiotracer (T 1/2 = 2.673 d) has a production rate that is about 50 times higher than that of 203Hg (T 1/2 = 46.595 d), the most frequently used mercury radiotracer. Hence it is possible to obtain a similar level of performance to 203Hg when it is used it in short-term experiments and produced by the irradiation of 196Hg with thermal neutrons, using mercury targets with the natural isotopic composition. However, if the 0.15% natural abundance of the 196Hg isotope is increased, the specific activity of the 197Hg tracer can be significantly improved. In the present work, 197Hg tracer was produced from mercury 51.58% enriched in the 196Hg isotope, and a 340-fold increase in specific activity with respect to natural mercury targets was obtained. When this high specific activity tracer is employed, mercury methylation and reduction experiments with minimum mercury additions are feasible. Tracer recovery in methylation experiments (associated with Me197Hg production from 197Hg2+ spike, but also with Hg2+ contamination and Me197Hg artefacts) with marine sediments was about 0.005% g−1 WS (WS: wet sediment) after 20 h incubation with mercury additions of 0.05 ng g−1 WS, which is far below natural mercury levels. In this case, the amount of Hg2+ reduced to Hg0 (expressed as the percent 197Hg0 recovered with respect to the 197Hg2+ added) varied from 0.13 to 1.6% g−1 WS. Me197Hg production from 197Hg2+ spike after 20 h of incubation of freshwater sediment ranged from 0.02 to 0.13% g−1 WS with mercury additions of 2.5 ng g−1 WS, which is also far below natural levels. 197Hg0 recoveries were low, 0.0058 ± 0.0013% g−1 WS, but showed good reproducibility in five replicates. Me197Hg production from 197Hg2+ spiked in freshwater samples ranged from 0.1 to 0.3% over a period of three days with mercury additions of 10 ng L−1. A detection limit of 0.05% for Me197Hg production from 197Hg2+ spike was obtained in seawater in a 25 h incubation experiment with mercury additions of 12 ng L−1.  相似文献   

7.
A novel and simple microprecipitation method was developed for the preconcentration of ultra-trace quantities of inorganic and methyl mercury species (iHg and MeHg) prior to their determination by cold vapour atomic absorption spectrometry (CVAAS). This method is based on the formation of anionic complexes of Hg2+ with KI followed by ion-associate complex with cetyltrimethyl ammonium bromide (CTAB) that forms a fluffy precipitate in perchloric acid medium. As a result, a fluffy coagulated mass separates and collects at the top of the liquid surface with clear phase separation without need of cooling or heating or centrifugation. The ion-association complex of iHg was then extracted into surfactant-rich phase (top layer) of CTAB-perchlorate precipitate while the uncomplexed MeHg remained in the aqueous phase (bottom layer). This condition also facilitates the removal of aqueous phase by simply draining out. The fluffy mass formed was dissolved in a mixture of HNO3 and HCl which was subsequently treated with chloroform to separate the surfactant from the mixture. Then the aqueous phase containing the preconcentrated iHg was analysed for mercury by CVAAS. Key factors such as sample pH, concentration of KI and CTAB that affect the performance of the proposed microprecipitation method were thoroughly investigated. For the determination of total mercury, another fresh aliquot of water was initially adjusted to pH ~ 3.5 with perchloric acid and subjected to oxidation by using modified UV-irradiation set-up and then taken through the microprecipitation procedure. This method allows speciation of mercury with a preconcentration factor of 200 and the limits of detection (LOD) of mercury obtained for CVAAS in conjunction with the present preconcentration method was found to be 2.4 ng L?1. Average recoveries obtained with the proposed approach were found to be in the range of 96–104% with RSD values < 5%. The interfering effects of various cations and anions were also investigated. The method was successfully applied for the determination of ultra-trace quantities of mercury species in real samples such as bottled water, tap water, lake water and ground waters.  相似文献   

8.
The determination of methylmercury (MeHg) in sediment samples is a difficult task due to the extremely low MeHg/THg (total mercury) ratio and species interconversion. Here, we present the method validation of a cost-effective fit-for-purpose analytical procedure for the measurement of MeHg in sediments, which is based on aqueous phase ethylation, followed by purge and trap and hyphenated gas chromatography–pyrolysis–atomic fluorescence spectrometry (GC–Py–AFS) separation and detection. Four different extraction techniques, namely acid and alkaline leaching followed by solvent extraction and evaporation, microwave-assisted extraction with 2-mercaptoethanol, and acid leaching, solvent extraction and back extraction into sodium thiosulfate, were examined regarding their potential to selectively extract MeHg from estuarine sediment IAEA-405 certified reference material (CRM). The procedure based on acid leaching with HNO3/CuSO4, solvent extraction and back extraction into Na2S2O3 yielded the highest extraction recovery, i.e., 94 ± 3% and offered the possibility to perform the extraction of a large number of samples in a short time, by eliminating the evaporation step. The artifact formation of MeHg was evaluated by high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC–ICP–MS), using isotopically enriched Me201Hg and 202Hg and it was found to be nonexistent. A full validation approach in line with ISO 17025 and Eurachem guidelines was followed. With this in mind, blanks, selectivity, working range (1–800 pg), linearity (0.9995), recovery (94–96%), repeatability (3%), intermediate precision (4%), limit of detection (0.45 pg) and limit of quantification (0.85 pg) were systematically assessed with CRM IAEA-405. The uncertainty budget was calculated and the major contribution to the combined uncertainty (16.24%, k = 2) was found to arise from the uncertainty associated with recovery (74.1%). Demonstration of traceability of measurement results is also presented. The validated measurement procedure was applied to the determination of MeHg incurred in sediments from a highly polluted and scarcely studied area in the Caribbean region.  相似文献   

9.
A rapid and efficient closed vessel microwave-assisted extraction (MAE) method based on acidic leaching was developed and optimized for the extraction of total mercury (Hg), inorganic mercury (Hg2+) and methylmercury (CH3Hg+) from fish tissues. The quantitative extraction of total Hg and mercury species from biological samples was achieved by using 5 mol L−1 HCl and 0.25 mol L−1 NaCl during 10 min at 60 °C. Total Hg content was determined using inductively coupled plasma mass spectrometry (ICP-MS). Mercury species were measured by liquid chromatography hyphenated with inductively coupled plasma mass spectrometry (LC-ICP-MS). The method was validated using biological certified reference materials ERM-CE464, DOLT-3, and NIST SRM-1946. The analytical results were in good agreement with the certified reference values of total Hg and CH3Hg+ at a 95% confidence level. Further, accuracy validation using speciated isotope-dilution mass spectrometry (SIDMS, as described in the EPA Method 6800) was carried out. SIDMS was also applied to study and correct for unwanted species transformation reactions during and/or after sample preparation steps. For the studied reference materials, no statistically significant transformation between mercury species was observed during the extraction and determination procedures. The proposed method was successfully applied to fish tissues with good agreement between SIDMS results and external calibration (EC) results. Interspecies transformations in fish tissues were slightly higher than certified reference materials due to differences in matrix composition. Depending on the type of fish tissue, up to 10.24% of Hg2+ was methylated and up to 1.75% of CH3Hg+ was demethylated to Hg2+.  相似文献   

10.
This work demonstrated the feasibility of mercury speciation analysis by anion exchange chromatographic separation with inductively coupled plasma mass spectrometry detection. For the first time, by complexing with the mobile phase containing 3-mercapto-1-propanesulfonate into negatively charged complexes, fast separation of inorganic mercury (Hg2+), monomethylmercury (MeHg), ethylmercury (EtHg) and phenylmercury (PhHg) was achieved within 5 min on a 12.5-mm strong anion exchange column. The detection limits for Hg2+, MeHg, EtHg and PhHg were 0.008, 0.024, 0.029 and 0.034 μg L−1, respectively. The relative standard deviations of peak height and peak area (5.0 μg L−1 for each Hg species) were all below 3%. The determined contents of Hg2+, MeHg and total Hg in a certified reference material of fish tissue by the proposed method were in good accordance with the certified values with satisfactory recoveries. The relative errors for determining MeHg and total mercury were −2.4% and −1.2%, respectively, with an acceptable range for spike recoveries of 94–101%. Mercury speciation in 11 fish samples were then analyzed after the pretreated procedure. The mercury contents in all fish samples analyzed were found compliant with the criteria of the National Standards of China.  相似文献   

11.
A fully automated system for the direct determination of methylmercury (MeHg), ethylmercury (EtHg), phenylmercury (PhHg), and inorganic mercury (Hg(II)) at the ng/L level is described. It is based on solid phase extraction preconcentration incorporated in a flow injection (FI) system, high performance liquid chromatography (HPLC) separation, reduction combined with thermolysis and determination by cold vapour atomic absorption spectrometry (CVAAS). For preconcentration a microcolumn of bonded silica with octadecyl functional groups (C18 reversed phase material) was used as a sorbent for the mercury complexes formed on-line with ammonium pyrrolidine dithiocarbamate. Retained mercury species are eluted with a methanol-acetonitrile-water mixture and subjected to separation on an octadecylsilane (ODS) column before determination by CVAAS. The sensitivity of organo-mercury determination could be improved by using NaBH4 as a reductant combined with a thermolysis step. In order to perform on-line measurements the preconcentration microcolumn was mounted in a pressure-tight casing. Limits of detection for MeHg, EtHg, PhHg and Hg(II) employing a sample volume of 58.5 mL were 9, 6, 10 and 5 ng/L, respectively. The relative standard deviation (RSD) calculated from 9 repeated measurements was found to be 3.6%, 5.5%, 10.4% and 7.6% for MeHg, EtHg, PhHg and Hg(II), respectively. Finally, the application of this method for speciation of mercury in fish and human urine is described.  相似文献   

12.
A fully automated system for the direct determination of methylmercury (MeHg), ethylmercury (EtHg), phenylmercury (PhHg), and inorganic mercury (Hg(II)) at the ng/L level is described. It is based on solid phase extraction preconcentration incorporated in a flow injection (FI) system, high performance liquid chromatography (HPLC) separation, reduction combined with thermolysis and determination by cold vapour atomic absorption spectrometry (CVAAS). For preconcentration a microcolumn of bonded silica with octadecyl functional groups (C18 reversed phase material) was used as a sorbent for the mercury complexes formed on-line with ammonium pyrrolidine dithiocarbamate. Retained mercury species are eluted with a methanol-acetonitrile-water mixture and subjected to separation on an octadecylsilane (ODS) column before determination by CVAAS. The sensitivity of organo-mercury determination could be improved by using NaBH4 as a reductant combined with a thermolysis step. In order to perform on-line measurements the preconcentration microcolumn was mounted in a pressure-tight casing. Limits of detection for MeHg, EtHg, PhHg and Hg(II) employing a sample volume of 58.5 mL were 9, 6, 10 and 5 ng/L, respectively. The relative standard deviation (RSD) calculated from 9 repeated measurements was found to be 3.6%, 5.5%, 10.4% and 7.6% for MeHg, EtHg, PhHg and Hg(II), respectively. Finally, the application of this method for speciation of mercury in fish and human urine is described. Received: 10 March 1997 / Revised: 29 January 1998 / Accepted: 5 February 1998  相似文献   

13.
A simple and ultrasensitive method, which was based on cold vapor generation (CVG) coupled to atomic fluorescence spectrometry (AFS), was proposed for speciation analysis of inorganic mercury (Hg2+) and methylmercury (MeHg) in water samples. In the presence of UV irradiation, all the mercury (MeHg+Hg2+) in a sample solution can be reduced to Hg0 by SnCl2; without UV irradiation, only Hg2+ species can be determined. So the concentration of MeHg can be obtained from the difference of the total mercury and Hg2+ concentration; thus, speciation analysis of Hg2+ and MeHg was simply achieved without chromatographic separation. Under the optimized experimental conditions, the limits of detection were 0.01 ng mL-1 for both Hg2+ and MeHg. The sensitivity and limit of detection were not dependent on the mercury species, and a simple Hg2+ aqueous standard series can be used for the determination of both Hg2+ and MeHg.  相似文献   

14.
Analysis and stability of mercury speciation in petroleum hydrocarbons   总被引:2,自引:0,他引:2  
Raw petroleum and natural gas often contain high concentrations of mercury, which can be damaging to the metal components of production facilities, as well as to the environment. Various Hg species have different properties in terms of mobility, reactivity and bioavailability. Thus, for cost-effective decisions regarding plant design, Hg extraction, and pollution control, speciation information must be available at the production facility. In this paper, a simple, wet chemical speciation method, which provides data on Hgo, dissolved and particulate total Hg, Hg(II), and methyl Hg is presented. The method incorporates species-specific extraction and separation procedures, followed by cold vapor atomic fluorescence spectrometry (CVAFS). For each species, detection limits of approximately 0.1 ng/g were obtained. Storage experiments in various containers showed that organo-mercury species were stable for at least 30 days in all containers except those made of polyethylene; and Hgo was stable in all containers except those made of stainless steel or polyethylene. Hg(II) was rapidly lost from all containers except those made of aluminum, which rapidly converted it to Hgo, which was stable. In general, most of the total Hg in petroleum products was particulate Hg, followed by dissolved Hg(II) and Hgo. Sub-ng/g concentrations of methyl-Hg were observed in most samples. Received: 4 June 1999 / Revised: 18 October 1999 / Accepted: 22 October 1999  相似文献   

15.
Mercury forms in contaminated environmental samples were studied by means of sequential extraction and thermal desorption from the solid phase. The sequential extraction procedure involved the following fractions: water soluble mercury, mercury extracted in acidic conditions, mercury bound to humic substances, elemental Hg and mercury bound to complexes, HgS, and residual mercury. In addition to sequential extraction, the distribution of mercury species as a function of soil particles size was studied. The thermal desorption method is based on the thermal decomposition or desorption of Hg compounds at different temperatures. The following four species were observed: Hg0, HgCl2, HgS and Hg(II) bound to humic acids. The Hg release curves from artificial soils and real samples were obtained and their applicability to the speciation analysis was considered.   相似文献   

16.
The purpose of the present work was to develop a simple, rapid, sensitive and accurate method for the simultaneous determination of inorganic mercury (Hg(2+)) and monomethylmercury compounds (MeHg) in natural water samples at the pg L(-1) level. The method is based on the simultaneous extraction of MeHg and Hg(2+)dithizonates into an organic solvent (toluene) after acidification of about 300 mL of a water sample, followed by back extraction into an aqueous solution of Na(2)S, removal of H(2)S by purging with N(2), subsequent ethylation with sodium tetraethylborate, room temperature precollection on Tenax, isothermal gas chromatographic separation (GC), pyrolysis and cold vapour atomic fluorescence spectrometric detection (CV AFS) of mercury. The limit of detection calculated on the basis of three times the standard deviation of the blank was about 0.006 ng L(-1) for MeHg and 0.06 ng L(-1) for Hg(2+)when 300 mL of water was analysed. The repeatability of the results was about 5% for MeHg and 10% for Hg(2+). Recoveries were 90-110% for both species.  相似文献   

17.
A method for the simultaneous preconcentration and determination of Hg(II) and MeHg(I) at the ng ml−1 level has been developed. This method is based on solid phase extraction using a newly synthesized chelating resin containing nitrogen and sulphur donor sites of the 1,2-bis(o-aminophenylthio)ethane moiety that is very selective for mercury. The characterization of the resin has been carried out by elemental analyses, infrared spectral data, thermogravimetric analysis and metal ion capacities. The resin is highly selective for Hg(II) and MeHg(I) with an exchange capacity of 0.38 and 0.30 mmol g−1, respectively. Various parameters like pH, column flow rate, desorbing agents are optimized. Cold vapour atomic absorption spectrometry (CVAAS) was used to measure the concentration of both species of mercury. The calibration graph was linear upto 10 ng ml−1 with a 3σ detection limit of 0.09 ng ml−1. The recovery of Hg(II) and MeHg(I) was found to be 98.9±2.0 and 98.0±1.1%, respectively. The method has been used for routine determination of trace levels of mercury species in natural waters to comply with more stringent regulations.  相似文献   

18.
A novel crosslinked chitosan (CCTS) has been synthesized by the reaction of water-soluble chitosan with epoxy chloropropane. In the presence of the chelating EDTA and in the pH range between 4–10, CCTS selectively adsorbed trace inorganic Hg in water samples with enrichment factors of 100. Inorganic Hg could be directly reduced using KBH4 without preceding elution and determined by CVAAS. Accordingly, the total mercury could be determined after all species of mercury in water samples were transformed into Hg2+. The detection limit (3σ) for mercury was 12 ng L–1 and the relative standard deviation less than 5% at the 50 ng L–1 level. Beer’s law was obeyed over the range 30–400 ng L–1 of mercury and the preconcentration method was applied to environmental water samples with the recoveries between 92–96%.  相似文献   

19.
Different sub-sampling procedures were applied for the determination of mercury species (as total mercury Hg, methylmercury MeHg+ and inorganic mercury Hg2+) in frozen fish meat. Analyses were carried out by two different techniques. After the sample material was pre-treated by microwave digestion, atomic fluorescence spectroscopy (AFS) was used for the determination of total Hg. Speciation analysis was performed according to the following procedure: dissolution of sample material in tetramethylammonium hydroxide (TMAH), derivatisation with sodium tetraethylborate (NaBEt4), extraction into isooctane and measurement with gas chromatography inductively coupled plasma mass spectrometry (GC-ICPMS) for the identification and quantification of methylmercury (MeHg+) and inorganic mercury (Hg2+). The concentration range of total Hg measured in the shark fillets is between 0.9 and 3.6 g g–1 thawed out shark fillet. Speciation analysis leads to 94% Hg present as MeHg+. Homogeneity, storage conditions and stability of analytical species and sample materials have great influence on analytical results. Sub-sampling of half-frozen/partly thawed out fish and analysis lead to significantly different concentrations, which are on average a factor of two lower.  相似文献   

20.
Previous animal experiments suggested that the Magos cold vapor atomic absorption spectroscopic (CVAAS) method might overestimate the concentrations of inorganic mercury (I-Hg) in the presence of methylmercury (MeHg). In the present study it is shown that this error is due to a fast degradation of MeHg during the formation of the analytical signal. For brain samples, about 5% of the total amount of MeHg in the reaction vessel is degraded to I-Hg. Speciation of Hg in aqueous solution of MeHg chloride, after purification with ionexchange chromatography using the Magos method, showed that about 9% was I-Hg. Analysis by NMR of MeHg chloride and MeHg hydroxide showed that less than 1% was in the form of I-Hg. The absolute magnitude of the error in the CVAAS method is dependent on the amounts of SnCl2 and MeHg in the reaction vessel; however, the ratio of I-Hg to total (T-Hg) is shown to be independent of the amount of MeHg (25.5–255 ng as Hg) in the reaction vessel. A procedure for corrections is proposed, based on the results from these studies and empirical data from speciation analyses of brain tissue from MeHg-exposed rats and rabbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号