首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first four dimensional (4D) quantum scattering calculations on the tetra-atomic H2O+Cl<-->HO+HCl reactions are reported. With respect to a full (6D) treatment, only the planar constraint and a fixed length for the HO spectator bond are imposed. This work explicitly accounts for the bending and local HO stretching vibrations in H2O, for the vibration of HCl and for the in-plane rotation of the H2O, HO and HCl molecules. The calculations are performed with the potential energy surface of Clary et al. and use a Born-Oppenheimer type separation between the motions of the light and the heavy nuclei. State-to-state cross sections are reported for a collision energy range 0-1.8 eV measured with respect to H2O+Cl. For the H2O+Cl reaction, present results agree with previous (3D) non planar calculations and confirm that excitation of the H2O stretching promotes more reactivity than excitation of the bending. New results are related to the rotation of the H2O molecule: the cross sections are maximal for planar rotational states corresponding to 10相似文献   

2.
The product state-resolved dynamics of the reactions H+H(2)O/D(2)O-->OH/OD((2)Pi(Omega);v',N',f )+H(2)/HD have been explored at center-of-mass collision energies around 1.2, 1.4, and 2.5 eV. The experiments employ pulsed laser photolysis coupled with polarized Doppler-resolved laser induced fluorescence detection of the OH/OD radical products. The populations in the OH spin-orbit states at a collision energy of 1.2 eV have been determined for the H+H(2)O reaction, and for low rotational levels they are shown to deviate from the statistical limit. For the H+D(2)O reaction at the highest collision energy studied the OD((2)Pi(3/2),v'=0,N'=1,A') angular distributions show scattering over a wide range of angles with a preference towards the forward direction. The kinetic energy release distributions obtained at 2.5 eV also indicate that the HD coproducts are born with significantly more internal excitation than at 1.4 eV. The OD((2)Pi(3/2),v'=0,N'=1,A') angular and kinetic energy release distributions are almost identical to those of their spin-orbit excited OD((2)Pi(1/2),v'=0,N'=1,A') counterpart. The data are compared with previous experimental measurements at similar collision energies, and with the results of previously published quasiclassical trajectory and quantum mechanical calculations employing the most recently developed potential energy surface. Product OH/OD spin-orbit effects in the reaction are discussed with reference to simple models.  相似文献   

3.
We have measured differential cross sections (DCSs) for the HD (v(')=1,j(')=2,6,10) products of the H+D(2) exchange reaction at five different collision energies in the range 1.48< or =E(coll)< or =1.94 eV. The contribution from the less energetic H atoms formed upon spin-orbit excitation of Br in the photolysis of the HBr precursor is taken into account for two collision energies, E(coll)=1.84 and 1.94 eV, allowing us to disentangle the two different channels. The measured DCSs agree well with new time-dependent quantum-mechanical calculations. As the product rotational excitation increases, the DCSs shift from backward to sideward scattering, as expected. We also find that the shapes of the DCSs show only a small overall dependence on the collision energy, with a notable exception occurring for HD (v(')=1,j(')=2), which appears bimodal at high collision energies. We suggest that this feature results from both direct recoil and indirect scattering from the conical intersection.  相似文献   

4.
A guided-ion beam tandem mass spectrometer is used to study the reactions, W(+) + CH(4) (CD(4)) and [W,C,2H](+) + H(2) (D(2)), to probe the [W,C,4H](+) potential energy surface. The reaction W(+) + CH(4) produces [W,C,2H](+) in the only low-energy process. The analogous reaction in the CD(4) system exhibits a cross section with strong differences at the lowest energies caused by zero-point energy differences, demonstrating that this reaction is slightly exothermic for CH(4) and slightly endothermic for CD(4). The [W,C,2H](+) product ion reacts further at thermal energies with CH(4) to produce W(CH(2))(x)(+) (x = 2-4). At higher energies, the W(+) + CH(4) reaction forms WH(+) as the dominant ionic product with smaller amounts of WCH(3)(+), WCH(+), and WC(+) also formed. The energy dependent cross sections for endothermic formation of the various products are analyzed and allow the determination of D(0)(W(+)-CH(3)) approximately 2.31 +/- 0.10 eV, D(0)(W(+)-CH(2)) = 4.74 +/- 0.03 eV, D(0)(W(+)-CH) = 6.01 +/- 0.28 eV, and D(0)(W(+)-C) = 4.96 +/- 0.22 eV. We also examine the reverse reaction, [W,C,2H](+) + H(2) (D(2)) --> W(+) + CH(4) (CH(2)D(2)). Combining the cross sections for the forward and reverse processes yields an equilibrium constant from which D(0)(W(+)-CH(2)) = 4.72 +/- 0.04 eV is derived. Theoretical calculations performed at the B3LYP/HW+/6-311++G(3df,3p) level yield thermochemistry in reasonable agreement with experiment. These calculations help identify the structures and electronic states of the species involved and characterize the potential energy surface for the [W,C,4H](+) system.  相似文献   

5.
State-to-state scattering dynamics of F+C2H6-->HF(v,J)+C2H5 have been investigated at Ecom=3.2(6) kcalmol under single-collision conditions, via detection of nascent rovibrationally resolved HF(v,J) product states with high-resolution infrared laser absorption methods. State-resolved Doppler absorption profiles are recorded for multiple HF(v,J) transitions originating in the v=0,1,2,3 manifold, analyzed to yield absolute column-integrated densities via known HF transition moments, and converted into nascent probabilities via density-to-flux analysis. The spectral resolution of the probe laser also permits Doppler study of translational energy release into quantum-state-resolved HF fragments, which reveals a remarkable linear correlation between (i) HF(v,J) translational recoil and (ii) the remaining energy available, Eavail=Etot-E(HF(v,J)). The dynamics are interpreted in the context of a simple impulsive model based on conservation of linearangular momentum that yields predictions in good agreement with experiment. Deviations from the model indicate only minor excitation of ethyl vibrations, in contrast with a picture of extensive intramolecular vibrational energy flow but consistent with Franck-Condon excitation of the methylene CH2 bending mode. The results suggest a relatively simple dynamical picture for exothermic atom+polyatomic scattering, i.e., that of early barrier dynamics in atom+diatom systems but modified by impulsive recoil coupling at the transition state between translationalrotational degrees of freedom.  相似文献   

6.
We present potential energy surfaces for the He-N2H+ system adiabatically corrected for the zero-point motion along the intermolecular stretching vibrations v1 = 0 and v1 = 1. The potentials are extended to shorter He-N2H+ separations which makes them useful for scattering calculations. Close coupling calculations of the spinless S matrices for the rotational excitation of N2H+ by He are presented, and recoupling techniques to obtain collisional excitation cross sections between the N2H+ hyperfine levels are used. The propensity rules between hyperfine levels are investigated for the case where two nuclear spins are involved. It is found that the only well defined propensity rule is DeltaF = DeltaF1 = Deltaj and that calculations are required in order to obtain the relative intensities of the two-spin hyperfine cross sections.  相似文献   

7.
A state-to-state dynamics study was performed at a collision energy of 1.53 eV to analyze the effect of the C-H stretch mode excitation on the dynamics of the gas-phase H+CHD3 reaction, which can evolve along two channels, H-abstraction, CD3+H2, and D-abstraction, CHD2+HD. Quasi-classical trajectory calculations were performed on an analytical potential energy surface constructed previously by our group. First, strong coupling between different vibrational modes in the entry channel was observed; i.e., the reaction is non-adiabatic. Second, we found that the C-H stretch mode excitation has little influence on the product rotational distributions for both channels, and on the vibrational distribution for the CD3+H2 channel. However, it has significant influence on the product vibrational distribution for the CHD2+HD channel, where the C-H stretch excitation is maintained in the products, i.e., the reaction shows mode selectivity, reproducing the experimental evidence. Third, the C-H stretch excitation by one quantum increases the reactivity of the vibrational ground-state, in agreement with experiment. Fourth, the state-to-state angular distributions of the CD3 and CHD2 products are reported, finding that for the reactant ground-state the products are practically sideways, whereas the C-H excitation yields a more forward scattering.  相似文献   

8.
Reactions of HOD(+) with N(2) have been studied for HOD(+) in its ground state and with one quantum of excitation in each of its vibrational modes: (001)--predominately OH stretch, 0.396 eV, (010)--bend, 0.153 eV, and (100)--predominately OD stretch, 0.293 eV. Integral cross sections and product recoil velocities were recorded for collision energies from threshold to 4 eV. The cross sections for both H(+) and D(+) transfer rise slowly from threshold with increasing collision energy; however, all three vibrational modes enhance reaction much more strongly than equivalent amounts of collision energy and the enhancements remain large even at high collision energy, where the vibration contributes less than 10% of the total energy. Excitation of the OH stretch enhances H(+) transfer by a factor of ~5, but the effect on D(+) transfer is only slightly larger than that from an equivalent increase in collision energy, and smaller than the effect from the much lower energy bend excitation. Similarly, OD stretch excitation strongly enhances D(+) transfer, but has essentially no effect beyond that of the additional energy on H(+) transfer. The effects of the two stretch vibrations are consistent with the expectation that stretching the bond that is broken in the reaction puts momentum in the correct coordinate to drive the system into the exit channel. From this perspective it is quite surprising that bend excitation also results in large (factor of 2) enhancements of both H(+) and D(+) transfer channels, such that its effect on the total cross section at collision energies below ~2 eV is comparable to those from the two stretch modes, even though the bend excitation energy is much smaller. For collision energies above ~2 eV, the vibrational effects become approximately proportional to the vibrational energy, though still much larger than the effects of equivalent addition of collision energy. Measurements of the product recoil velocity distributions show that reaction is direct at all collision energies, with roughly half the products in a sharp peak corresponding to stripping dynamics and half with a broad and approximately isotropic recoil velocity distribution. Despite the large effects of vibrational excitation on reactivity, the effects on recoil dynamics are small, indicating that vibrational excitation does not cause qualitative changes in the reaction mechanism or in the distribution of reactive impact parameters.  相似文献   

9.
A complete quantum study for the state-to-state Li + HF(v,j,m) → LiF(v',j',Ω') + H reactive collisions has been performed using a wave packet method, for different initial rotational states and helicity states of the reactants. The state-to-state differential cross section has been simulated, and the polarization of products extracted. It is found that the reactivity is enhanced for nearly collinear collisions, which produces a vibrational excitation of HF, needed to overcome the late barrier. It is also found that LiF(v' = 0) products are preferentially forward scattered, while vibrationally excited LiF(v' = 1 and 2) are backward scattered. These results are interpreted with a simple reaction mechanism, based on the late character and bent geometry of the transition state, originating from a covalent/ionic crossing, which consists of two steps: the arrival at the transition state and the dissociation. In the first step, in order to get to the saddle point some HF vibrational excitation is required, which favors head-on collisions and therefore low values of m. In the second step a fast dissociation of H atom takes place, which is explained by the ionic Li(+)F(-)H character of the bent transition state: the FH(-) is repulsive making that H depart rapidly leaving a highly rotating LiF molecule. For the higher energy analyzed, where resonances slightly contribute, the orientation and alignment of product rotational states, referred to as reactants frame (with the z-axis parallel to k), are approximately constant with the scattering angle. The alignment is close to -1, showing that j' is perpendicular to k, while starting from initial states with well defined rotational orientation, as states with pure m values, the final rotational are also oriented. It is also found that when using products frame (with the z'-axis parallel to k') the rotational alignment and orientation of products varies a lot with the scattering angle just because the z' axis changes from being parallel to anti-parallel to k when varying from θ = 0 to π.  相似文献   

10.
To analyze the effect of the C-H stretch mode excitation on the dynamics of the Cl + CHD3 gas-phase abstraction reaction, an exhaustive state-to-state dynamics study was performed. This reaction can evolve along two channels: H-abstraction, CD3 + ClH, and D-abstraction, CHD2 + ClD. On an analytical potential energy surface constructed previously by our group, named PES-2005, quasi-classical trajectory calculations were performed at a collision energy of 0.18 eV, including corrections to avoid zero-point energy leakage along the trajectories. First, strong coupling between different vibrational modes in the entry valley was observed; i.e., the reaction is vibrationally nonadiabatic. Second, for the ground-state CHD3(nu=0) reaction, the diatomic fragments appeared in their ground states, and the H- and D-abstraction reactions showed similar reactivities. However, when the reactivity per atom is considered, the H is three times more reactive than the D atom. Third, when the C-H stretch mode is excited by one quantum, CHD3(nu1=1), the H-abstraction is strongly favored, and the C-H stretch excitation is maintained in the product CHD2(nu1=1) + ClD channel; i.e., the reaction shows mode selectivity, reproducing the experimental evidence, and also the reactivity of the vibrational ground state is increased, in agreement with experiment. Fourth, the state-to-state angular distributions of the CD3 and CHD2 products showed the products to be practically sideways for the reactant ground state, while the C-H excitation yielded a more forward scattering, reproducing the experimental data. The role of the zero-point energy correction was also analyzed, and we find that the dynamics results are very sensitive on how the ZPE issue is treated. Finally, a comparison is made with the similar H + CHD3(nu1=0,1) and Cl + CH4(nu1=0,1) reactions.  相似文献   

11.
We present the results of a time-dependent quantum mechanical investigation using centrifugal sudden approximation in the form of reaction probability as a function of collision energy (E(trans)) in the range 0.3-3.0 eV for a range of total angular momentum (J) values and the excitation function sigma(E(trans)) for the exchange reaction H(-) + H(2) (v = 0, j = 0) --> H(2) + H(-) and its isotopic variants in three dimensions on an accurate ab initio potential energy surface published recently (J. Chem. Phys. 2004, 121, 9343). The excitation function results are shown to be in excellent agreement with those obtained from crossed beam measurements by Zimmer and Linder for H(-) + D(2) collisions for energies below the threshold for electron detachment channel and somewhat larger than the most recent results of Haufler et al. for (H(-), D(2)) and (D(-), H(2)) collisions.  相似文献   

12.
13.
A detailed quasi-classical trajectory study of the H + CO(2) → HO + CO reaction is reported on an accurate potential energy surface based on ab initio data. The influence of the vibrational and rotational excitations of CO(2) was investigated up to the collision energy of 2.35 eV. It was found that the total reaction integral cross section increases monotonically with the collision energy, consistent with experimental results. The excitation of the CO(2) bending vibration enhances the reaction, while the excitation in its asymmetric stretching vibration inhibits the reaction. The calculated thermal rate constants are in excellent agreement with experiment. At the state-to-state level, the rotational state distributions of the HO product are in good agreement with experimental results, while those for the CO product are much hotter than measurements. The calculated differential cross sections are dominated by forward scattering, suggesting that the lifetime of the HOCO intermediate may not be sufficiently long to render the reaction completely statistical.  相似文献   

14.
Collision induced dissociation (CID), four center reaction (4C), and single exchange reaction (SE) in H(2) (v(1) = high) + D(2) (v(2) = low) were studied by means of time-dependent wave packet approach within a full-dimensional model. Initial state-selected total reaction probabilities for the three competitive processes have been computed on two realistic global potential energy surfaces of Aguado-Suárez-Paniagua and Boothroyd-Martin-Keogh-Peterson (BMKP) with the total angular momentum J = 0. The role of both vibrationally excited and rotationally excited reagents was examined by varying the initial vibrational and rotational states. The vibrational excitation of the hot diatom gives an enhancement effect on the CID process, while the vibrational excitation of the cold diatom gives an inhibition effect. The rotational excitation of both reagents has a significant effect on the reaction process. The 4C and SE probabilities are at least one order of magnitude smaller than the CID probabilities over the energy range considered. Isotope substitution effects were also studied by substituting the collider D(2) by H(2) and HD on the BMKP potential energy surfaces. The CID process is most efficient for the H(2) + D(2) combination and least efficient for the H(2) + H(2) combination and is different for the 4C and SE processes.  相似文献   

15.
While Cl + H(2) reactive collisions have been a subject of numerous experimental and theoretical studies, inelastic collisions leading to rotational energy transfer and/or vibrational excitation have been largely ignored. In this work, extensive quantum mechanical calculations covering the 0.5-1.5 eV total energy range and various initial rovibrational states have been carried out and used to perform a joint study of inelastic and reactive Cl + H(2) collisions. Quasiclassical trajectories calculations complement the quantum mechanical results. The analysis of the inelastic transition probabilities has revealed the existence of two distinct dynamical regimes that correlate with low and high impact parameters, b, and are neatly separated by glory scattering. It has been found that while high-b collisions are mainly responsible for |Δj| = 2 transitions which dominate the inelastic scattering, they are very inefficient in promoting higher |Δj| transitions. The effectiveness of this type of collision also drops with rotational excitation of H(2). In contrast, reactive scattering, that competes with |Δj|?> 2 inelastic transitions, is exclusively caused by low-b collisions, and it is greatly favored when the reactants get rotationally excited. Previous studies focusing on the reactivity of the Cl + H(2) system established that the van der Waals well located in the entrance channel play a key role in determining the mechanism of the collisions. Our results prove this to be also a case for inelastic processes, where the origin of the double dynamical regime can be traced back to the influence exerted by this well that shapes the topology of the entrance channel of the Cl-H(2) system.  相似文献   

16.
A quasiclassical trajectory study of the state specific H+D(2)(upsilon = 0,j = 0) --> HD(upsilon' = 0,j' = 0) + D reaction at a collision energy of 1.85 eV (total energy of 2.04 eV) found that the scattering is governed by two unexpected and dominant new mechanisms, and not by direct recoil as is generally assumed. The new mechanisms involve strong interaction with the sloping potential around the conical intersection, an area of the potential energy surface not previously considered to have much effect upon reactive scattering. Initial investigations indicate that more than 50% of reactive scattering could be the result of these new mechanisms at this collision energy. Features in the corresponding quantum mechanical results can be attributed to these new (classical) reaction mechanisms.  相似文献   

17.
We describe fully quantum, time-independent scattering calculations of the F+H2-->HF+H reaction, concentrating on the HF product rotational distributions in v'=3. The calculations involved two new sets of ab initio potential energy surfaces, based on large basis set, multireference configuration-interaction calculations, which are further scaled to reproduce the experimental exoergicity of the reaction. In addition, the spin-orbit, Coriolis, and electrostatic couplings between the three quasidiabatic F+H2 electronic states are included. The calculated integral cross sections are compared with the results of molecular beam experiments. At low collision energies, a significant fraction of the reaction is due to Born-Oppenheimer forbidden, but energetically allowed reaction of F in its excited (2P 1/2) spin-orbit state. As the collision energy increases, the Born-Oppenheimer allowed reaction of F in its ground (2P 3/2) spin-orbit state rapidly dominates. Overall, the calculations agree reasonably well with the experiment, although there remains some disagreement with respect to the degree of rotational excitation of the HF(v'=3) products as well as with the energy dependence of the reactive cross sections at the lowest collision energies.  相似文献   

18.
The H- and D-atom products from collisional quenching of OD A (2)Σ(+) by H(2) are characterized through Doppler spectroscopy using two-photon (2 (2)S ←← 1 (2)S) laser-induced fluorescence. Partial deuteration enables separation of the channel forming H + HOD products, which accounts for 75% of reactive quenching events, from the D + H(2)O product channel. The Doppler profiles, along with those reported previously for other isotopic variants, are transformed into product translational energy distributions using a robust fitting procedure based on discrete velocity basis functions. The product translational energy distribution for the H-atom channel is strongly peaked at low energy (below 0.5 eV) with a long tail extending to the energetic limit. By contrast, the D-atom channel exhibits a small peak at low translational energy with a distinctive secondary peak at higher translational energy (approximately 1.8 eV) before falling off to higher energy. In both cases, most of the available energy flows into internal excitation of the water products. Similar distributions are obtained upon reanalysis of D- and H-atom Doppler profiles, respectively, from reactive quenching of OH A (2)Σ(+) by D(2). The sum of the translational energy distributions for H- and D-atom channels is remarkably similar to that obtained for OH A (2)Σ(+) + H(2), where the two channels cannot be distinguished from one another. The product translational energy distributions from reactive quenching are compared with those obtained from a previous experiment performed at higher collision energy, quasiclassical trajectory calculations of the post-quenching dynamics, and a statistical model.  相似文献   

19.
A pump-probe laser-induced fluorescence technique has been used to examine the nascent OH X (2)Pi product state distribution arising from non-reactive quenching of electronically excited OH A (2)Sigma(+) by molecular hydrogen and deuterium under single-collision conditions. The OH X (2)Pi products were detected in v'=0, 1 and 2; the distribution peaks in v'=0 and decreases monotonically with increasing vibrational excitation. In all vibrational levels probed, the OH X (2)Pi products are found to be highly rotationally excited, the distribution peaking at N'=15 when H(2) was used as the collision partner and N'=17 for D(2). A marked propensity for production of Pi(A') Lambda-doublet levels was observed, while both OH X (2)Pi spin-orbit manifolds were equally populated. These observations are interpreted as dynamical signatures of the nonadiabatic passage of the OH + H(2)/D(2) system through the seams of conical intersection that couple the excited state (2 (2)A') and ground state (1 (2)A') surfaces.  相似文献   

20.
Rotational state resolved center-of-mass angular scattering and kinetic energy release distributions have been determined for the HCl (v' = 0, j' = 0-6) products of the reaction of chlorine with n-butane using the photon-initiated reaction technique, coupled with velocity-map ion imaging. The angular and kinetic energy release distributions derived from the ion images are very similar to those obtained previously for the Cl plus ethane reaction. The angular distributions are found to shift from forward scattering to more isotropic scattering with increasing HCl rotational excitation. The kinetic energy release distributions indicate that around 30% of the available energy is channeled into internal excitation of the butyl radical products. The data analysis also suggests that H-atom abstraction takes place from both primary and secondary carbon atom sites, with the primary site producing rotationally cold, forward scattered HCl (v' = 0) products, and the secondary site yielding more isotropically scattered HCl (v' = 0) possessing higher rotational excitation. The mechanisms leading to these two product channels are discussed in the light of the present findings, and in comparison with studies of other Cl plus alkane reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号