首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
X-ray crystallography identifies the aromatic donor group D = 2,5-dimethoxy-4-methylphenyl to be a suitable redox center for the construction of organic mixed-valence crystals owing to its large structural change attendant upon 1e oxidation to the cation-radical (D*(+)). The combination of cyclic voltammetry, dynamic ESR line broadening, and electronic (NIR) spectroscopy allows the intervalence electron transfer between the redox centers in the mixed-valence system D-br-D*(+) [where br can be an aliphatic trimethylene or an aromatic (poly)phenylene bridge] to be probed quantitatively. Independent measures of the electronic coupling matrix element (H) for D/D*(+) electron exchange via Mulliken-Hush theory accord with the X-ray crystallographic data-both sufficient to consistently identify the various D-br-D*(+) according to the Robin-Day classification. Thus, the directly coupled biaryl D-D*(+) is a completely delocalized cation in class III with the charge distributed equally over both redox centers. The trimethylene- and biphenylene-bridged cations D(CH(2))(3)D*(+) and D(ph)(2)D*(+) with highly localized charge distributions are prototypical class II systems involving moderately coupled redox centers with H approximately equal to 400 cm(-1). The borderline region between class II/III is occupied by the phenylene-bridged cation D(ph)D*(+); and the X-ray, CV, and NIR analyses yield ambivalent H values (which we believe to be) largely a result of an unusually asymmetric (20/80) charge distribution that is polarized between the D/D*(+) redox centers.  相似文献   

2.
The spontaneous assembly of aromatic cation-radicals (D(+)(*)()) with the parent donor (D) to afford the paramagnetic dimer (D)(2)(+)(*)() is accompanied by a dramatic color change. For example, spectral (UV-vis and ESR) and X-ray crystal structure analyses establish the molecular association of octamethylbiphenylene cation-radical with its neutral counterpart to produce the mixed-valence or dimeric cation-radical in which the positive charge is completely delocalized over both aromatic moieties. The use of the sterically hindered cation-radicals confirms the new spectral or charge-resonance (CR) band to result in dimeric cation-radicals in which the intermolecular separation occurs at an optimum distance allowed by van der Waals contacts. The striking similarities between the classical donor/acceptor (EDA) complexes and the dimeric cation-radicals (D)(2)(+)(*)() (both in terms of the geometrical requirement as well as the appearance of new absorption bands) suggest that the latter can be considered as particular examples of Mulliken's charge-transfer complexes in which the positive charge is completely (equally) delocalized over both donor (D) and acceptor (D(+)(*)()).  相似文献   

3.
Highly soluble and stable quinone dimer and trimers were successfully yielded by introduction of t-Bu substituents. In X-ray structure analysis, the dimer quinone moiety was distorted into the boat shape, which was clarified by MO calculations. X-ray and UV/vis studies indicated that the covalently linked quinone moieties bear a large torsional angle. Nevertheless, the reduction potentials rose significantly with the order of monomer < dimer < trimer, indicating that the negative charge was efficiently delocalized within the radical anions.  相似文献   

4.
The cationic state of a p-phenylenediamine (PDA) molecule having two nitroxide radical groups was prepared and characterized using electrochemical, electron spin resonance (ESR) spectroscopic, and absorption spectroscopic methods. The delocalized intervalence state of the p-phenylendiamine (PDA) moiety was detected in the cationic state. From the pulsed ESR measurements, it was confirmed that the delocalized spin induces parallel spin alignment between the localized two nitroxide groups which are magnetically weakly coupled in the neutral state. It was found that the resulting high-spin alignment does not seriously affect the delocalized intervalence state of the PDA radical cation.  相似文献   

5.
We report the development of an experimentally based structural analysis to examine the degree of localization of the spin and charge in the phenalenyl-based neutral radical molecular conductors--the results motivate a reinterpretation of the electronic structure of a number of the radicals that we have reported over the past 10 years. The analysis is based on the well-known relationship between bond order and bond length and makes use of the experimental bond distance deviations between the molecular structure of the radical and its corresponding cation. We determined the single crystal X-ray structure of the ethyl radical (1) at 11 temperatures between 90 K and room temperature so that we could follow the evolution of the structure and the electron density distribution through the magnetic phase transition that occurs in the vicinity of 140 K. We show that the enhanced conductivity in the dimeric ethyl (1) and butyl (3) radicals at the magnetic phase transition results from the development of a complex, but highly delocalized electronic structure and not to the formation of a diamagnetic pi-dimer. We find that the monomeric radicals 4, 12, and 13 have an asymmetric electron density distribution in the crystal lattice whereas radical 11 is the only monomeric radical which remains fully delocalized. The pi-chain radicals (7, 8, 14, and 15) retain the strongly delocalized electronic structures expected for a resonating valence bond ground-state structure.  相似文献   

6.
The optical absorption spectra of the delocalized intervalence radical cations of seven o,o'-linked benzidine derivatives that have the nitrogens protected as 9-(9-aza-bicyclo[3.3.1]nonan-3-one) derivatives are discussed and compared with that of the p-phenylene radical cation. The linking units are CH2, CH2CH2, NMe, S, SO2, and C=O, and we also studied H,H (the unlinked benzidine). The lowest-energy absorption band is assigned as the transition from the antibonding combination of symmetrical N and aromatic orbitals to the antibonding combination of the antisymmetric N and aromatic orbitals using TD-DFT calculations, and a good correlation between the observed transition energies and those calculated using the simple Koopmans theorem-based "neutral in-cation geometry" calculations on the UB3LYP/6-31G* structures is found. The use of the two-state model that equates the electronic interaction through the bridge between the amino groups with half of the lowest transition energy is seriously incorrect for these and other delocalized intervalence compounds. The problem of extracting the electronic interactions that actually are involved from calculated transition energies is discussed.  相似文献   

7.
A highly oxidized cobalt porphyrin dimer is reported. Each cobalt(II) ion and porphyrin ring underwent 1e oxidation with iodine as the oxidant to give a 4e‐oxidized cobalt(III) porphyrin π‐cation radical dimer. The bridging ethylene group allows for substantial conjugation of the porphyrin macrocycles, thus leading to a strong antiferromagnetic coupling between the π‐cation radicals and to stabilization of the singlet state. X‐ray crystallography clearly showed that the complex may be considered as a real supramolecule rather than two cobalt(III) porphyrin π‐cation radicals that interact through space.  相似文献   

8.
Intervalence absorption bands appearing in the diagnostic near-IR region are consistently observed in the electronic spectra of mixed-valence systems containing a pair of aromatic redox centers (Ar(*)(+)/Ar) that are connected by two basically different types of molecular bridges. The through-space pathway for intramolecular electron transfer is dictated by an o-xylylene bridge in the mixed-valence cation radical 3(*)(+) with Ar = 2,5-dimethoxy-p-tolyl (T), in which conformational mobility allows the proximal syn disposition of planar T(*)(+)/T redox centers. Four independent experimental probes indicate the large through-space electronic interaction between such cofacial Ar(*)(+)/Ar redox centers from the measurements of (a) sizable potential splitting in the cyclic voltammogram, (b) quinonoidal distortion of T(*)(+)/T centers by X-ray crystallography, (c) "doubling" of the ESR hyperfine splittings, and (d) a pronounced intervalence charge-resonance band. The through (br)-bond pathway for intramolecular electron transfer is enforced in the mixed-valence cation radical 2a(*)(+) by the p-phenylene bridge which provides the structurally inflexible and linear connection between Ar(*)(+)/Ar redox centers. The direct comparison of intramolecular rates of electron transfer (k(ET)) between identical T(*)(+)/T centers in 3(*)(+) and 2a(*)(+)( )()indicates that through-space and through-bond mechanisms are equally effective, despite widely different separations between their redox centers. The same picture obtains for 3(*)(+) and 2a(*)(+)( )()from theoretical computations of the first-order rate constants for intramolecular electron transfer from Marcus-Hush theory using the electronic coupling elements evaluated from the diagnostic intervalence (charge-transfer) transitions. Such a strong coherence between theory and experiment also applies to the mixed-valence cation radical 7(*)(+), in which the aromatic redox S center is sterically encumbered by annulation.  相似文献   

9.
Anthraniloyl hydrazide (AH) contains two −NH2 groups, one of them is attached to the aromatic ring and the other is the hydrazinic, −NH2. It is found that only the later reacts with the carbonyl compounds to form Schiff bases, while the former remains inert. The reasons behind this difference in reactivity are analyzed on the basis of semi-empirical calculations, which show that the lone pair of the ring −NH2 is considerably delocalized over the ring, resulting in an accumulation of a positive charge on this particular nitrogen. Ni(II) complex of 2,6-diacetylpyridine bis(anthraniloyl hydrazone) has been prepared and characterized by various physico-chemical methods. The structure of the complex was determined by X-ray crystallography. It was found that in the solid state, the compound exist as a dimer, and two coordinated ligand moieties form a double helix around the two metal ions. H-bonding then results in extension of double helix to an infinite chain.  相似文献   

10.
Extending our previous study on the title species (J. Phys. Chem. A2010, 114, 6787), we investigated the dimer cations that are formed on oxidation of the glucobrassin derivatives indole-3-carbinol (I3C) and diindolylmethane (DIM) and of parent indole (I). Radiolysis in ionic liquid and Ar matrices shows that, at sufficiently high concentrations and/or on annealing the solid glasses, intense intermolecular charge-resonance (CR) absorption bands in the NIR herald the formation of sandwich-type dimer cations. The molecular and electronic structure of these species is modeled by calculations with the double-hybrid B2-PLYP-D density functional method which yields predictions in good accord with experiment. The radical cation of DIM also shows a CR band, but unlike in the case of I and I3C, its occurrence is not dependent on the concentration but instead on the solvent: in ionic liquid the CR band is initially absent and arises only on annealing, whereas in Ar matrices it is present from the outset and undergoes blue shifting and sharpening on annealing. These puzzling findings are rationalized on the basis of B2-PLYP-D calculations which predict that neutral DIM exists in the form of two conformers, present in different relative amounts in the two experiments, which on vertical ionization form distinct radical cations, a nonsymmetric one where the odd electron is largely localized on one of the two indole moieties and one with C(2) symmetry where charge and spin are completely delocalized over both halves of the molecule, thus giving rise to an intramolecular CR transition. On annealing, the nonsymmetric cation relaxes to a similarly delocalized structure with C(s) symmetry, thus explaining the observed increase and the shift of the CR band. We believe that DIM(?+) represents the first example of a radical cation which can exist under the same conditions as a localized and a delocalized complex cation.  相似文献   

11.
Molecular structures of two unsaturated oxazolone derivatives involving furan rings, which are decorated with p-tolyl (FurM) and 4-nitro phenyl (FurN), were investigated by X-ray crystallography and quantum chemical calculations. Their ground and excited states were examined by DFT and TD-DFT computations with the aid of topological electron density studies, NBO and Charge Decomposition Analysis. Both compounds have push-pull (D–π–A) framework using oxazolone ring as π-linker. Depending on the transitions from the ground to excited states, intramolecular charge transfer (ICT) in both compounds results in aromatization of oxazolones. Push-pull ability of FurN has more pronounced than that of FurM. The use of furan instead of almost fully aromatic benzenoid ring reduces HOMO?LUMO band gap due to relatively low aromaticity level of furan. Introduction of nitro substituent leads to a further reduction in HOMO?LUMO gap. In addition, electronic redistribution in the excited state results in aromatization of oxazolone moieties without elongation of carbonyl bonds.  相似文献   

12.
BN‐embedded oligomers with different pairs of BN units were synthesized by electrophilic borylation. Up to four pairs of BN units were incorporated in the large polycyclic aromatic hydrocarbons (PAHs). Their geometric, photophysical, electrochemical, and Lewis acidic properties were investigated by X‐ray crystallography, optical spectroscopy, and cyclic voltammetry. The B?N bonds show delocalized double‐bond characteristics and the conjugation can be extended through the trans‐orientated aromatic azaborine units. Calculations reveal the relatively lower aromaticity for the inner azaborine rings in the BN‐embedded PAH oligomers. The frontier orbitals of the longer oligomers are delocalized over the inner aromatic rings. Consequently, the inner moieties of the BN‐embedded PAH oligomers are more active than the outer parts. This is confirmed by a simple oxidation reaction, which has significant effects on the aromaticity and the intramolecular charge‐transfer interactions.  相似文献   

13.
BN-embedded oligomers with different pairs of BN units were synthesized by electrophilic borylation. Up to four pairs of BN units were incorporated in the large polycyclic aromatic hydrocarbons (PAHs). Their geometric, photophysical, electrochemical, and Lewis acidic properties were investigated by X-ray crystallography, optical spectroscopy, and cyclic voltammetry. The B−N bonds show delocalized double-bond characteristics and the conjugation can be extended through the trans-orientated aromatic azaborine units. Calculations reveal the relatively lower aromaticity for the inner azaborine rings in the BN-embedded PAH oligomers. The frontier orbitals of the longer oligomers are delocalized over the inner aromatic rings. Consequently, the inner moieties of the BN-embedded PAH oligomers are more active than the outer parts. This is confirmed by a simple oxidation reaction, which has significant effects on the aromaticity and the intramolecular charge-transfer interactions.  相似文献   

14.
[Figure: see text]. The optical spectra of 10 p-phenylene-bridged delocalized intervalence compounds MC6H4M*- or *+ are analyzed using the Koopmans-based method, which considers only transitions from filled orbitals to the singly occupied orbital (SOMO), called Hoijtink type A transitions, and from the SOMO to unoccupied orbitals, Hoijtink type B transitions, and ignores configuration interaction. The radical ions with quinonoid structures, those that form ring-M double bonds with M = C(CN)2, NMe2, 3-oxo-9-azabicyclo[3.3.1], NPPh3, and O when the odd electron of the intervalence oxidation level is removed, are calculated to have the lowest-allowed type B transition lying mostly above the lowest-allowed A transition, with B(i)- A(j) decreasing in the order shown from +14 370 to -1390 cm(-1), and the more intense second-lowest-allowed type B transition B(i) - A(j) from +14 940 to +7070 cm(-1). The five radical anions with benzenoid structures, which form ring-M single bonds with X = CN, CO2Me, CHO, C3HMeBF2O2, and NO2 when the odd electron of the intervalence oxidation level is removed, have a B(i)- A(j) value of the opposite sign that increases in magnitude from -2880 to -17 050 cm(-)(1) in the order shown. Configuration interaction is of course present in the observed spectra, and the predictions ignoring it mostly overestimate transition energies by 1900-2600 cm(-1) for the quinonoid compounds (but by 450 cm(-1) for the M = C(CN)2 radical anion), and by 1000-1400 cm(-1) for the benzenoid compounds (2500 cm(-1) for the M = CN radical anion). The very simple Koopmans-based model is useful for considering the optical spectra of these radical ions.  相似文献   

15.
Transient 1:1 precursor complexes for intermolecular self-exchange between various organic electron donors (D) and their paramagnetic cation radicals (D+*), as well as between different electron acceptors (A) paired with their anion radicals (A-*), are spectrally (UV-NIR) observed and structurally (X-ray) identified as the cofacial (pi-stacked) associates [D, D+*] and [A-*, A], respectively. Mulliken-Hush (two-state) analysis of their diagnostic intervalence bands affords the electronic coupling elements (HDA), which together with the Marcus reorganization energies (lambda) from the NIR spectral data are confirmed by molecular-orbital computations. The HDA values are found to be a sensitive function of the bulky substituents surrounding the redox centers. As a result, the steric modulation of the donor/acceptor separation (rDA) leads to distinctive electron-transfer rates between sterically hindered donors/acceptors and their more open (unsubstituted) parents. The latter is discussed in the context of a continuous series of outer- and inner-sphere mechanisms for organic electron-transfer processes in a manner originally formulated by Taube and co-workers for inorganic (coordination) donor/acceptor dyads-with conciliatory attention paid to traditional organic versus inorganic concepts.  相似文献   

16.
We synthesized special-pair/electron-acceptor systems consisting of a complementary slipped cofacial dimer of imidazolyl-substituted zinc porphyrin, bearing pyromellitdiimide as the electron acceptor. In the case of the dimer, the first and second oxidation potentials were split into a total of four peaks in the differential pulse voltammetry measurement. Furthermore, the shift values of the first oxidation potentials obtained by changing the solvent polarity for the dimer were almost half of those observed for the monomer. These results indicate that the radical cation is delocalized over the whole pi system of the dimer. Time-resolved transient absorption measurements revealed that, relative to the corresponding monomer, the dimer accelerated the charge separation rate, but decelerated the charge recombination rate. The smaller reorganization energy of the slipped cofacial dimer relative to that of the monomeric system demonstrates the significance of the special-pair arrangement for efficient charge separation in photosynthesis.  相似文献   

17.
An unprecedented metal-stabilized phenoxonium cation was prepared by a process involving dearomatization of a phenoxy complex. The unique eta2 C=O-metal (iridium) coordination mode leaves the positive charge delocalized within the former aromatic ring. The X-ray structure and conversion into eta2 C=O-coordinated metal-quinone complex are described.  相似文献   

18.
The Class III (delocalized) intervalence radical anions of 1,4-dinitrobenzene, 2,6-dinitronaphthalene, 2,6-dinitroanthracene, 9,9-dimethyl-2,7-dinitrofluorene, 4,4'-dinitrobiphenyl, and 1,5-dinitronaphthalene show charge-transfer bands in their near-IR spectra. The dinitroaromatic radical anions have comparable but slightly larger electronic interactions (H(ab) values) through the same aromatic bridges as do the corresponding dianisylamino-substituted radical cations. H(ab) values range from 5410 cm(-)(1) (1,4- dinitrobenzene) to 3400 cm(-)(1) (9,9-dimethyl-2,7-dinitrofluorene), decreasing as the number of bonds between the nitro groups increases, except for the 1,5-dinitronaphthalene radical-anion, which has a coupling similar to that of 9,9-dimethyl-2,7-dinitrofluorene. All charge-transfer bands show vibrational fine structure. The vertical excitation energies (lambda(v)) were estimated from the vibrational components, obtained by simulation of the entire band. The large 2H(ab)/lambda(v) values confirm these radicals to be Class III delocalized mixed-valence species. Analysis using Cave and Newton's generalized Mulliken-Hush theory relating the transition dipole moment to the distance on the diabatic surfaces suggests that the electron-transfer distance on the diabatic surfaces, d(ab), is only 26-40% of the nitrogen-to-nitrogen distance, which implies that something may be wrong with our analysis.  相似文献   

19.
The synthesis of new 25,27-dialkyloxy-5,17-diarylcalix[4]arenes-crown-6 1af in 1,3-alternate conformation by Suzuki cross-coupling reaction is reported. Their conformation was determined using 1H, 13C, 2D NMR and ROESY analysis, and X-ray crystallography. Extraction experiments using a two-phase solvent method involving sodium, potassium or cesium picrate showed good extraction of the cesium cation. The X-ray crystal structures of 1,3-alternate 25,27-dipropoxy-5,17-diphenylcalix[4]arene-crown-6 ether 1a and its cesium picrate complex were established. Solid-state data were used to determine the complexation behavior of these new ligands. The efficiency of calixarenes 1af for cesium ion extraction could be ascribed to the rigidity and flatness linkages caused by the aryl groups at the lower rim of the aromatic moieties in the calixarene skeleton. In addition, the introduction of these aromatic moieties in positions 5 and 17 enhanced the solubility of the metal complexes in organic media.  相似文献   

20.
The geometric and electronic structure of an oxidized bimetallic Ni complex incorporating two redox‐active Schiff‐base ligands connected via a 1,2‐phenylene linker has been investigated and compared to a monomeric analogue. Information from UV/Vis/NIR spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, electrochemistry, and density functional theory (DFT) calculations provides important information on the locus of oxidation for the bimetallic complex. The neutral bimetallic complex is conformationally dynamic at room temperature, which complicates characterization of the oxidized forms. Comparison to an oxidized monomer analogue 1 provides critical insight into the electronic structure of the oxidized bimetallic complex 2 . Oxidation of 1 provides [ 1 .]+, which is characterized as a fully delocalized ligand radical complex; the spectroscopic signature of this derivative includes an intense NIR band at 4500 cm?1. Oxidation of 2 to the bis‐oxidized form affords a bis‐ligand radical species [ 2 ..]2+. Variable temperature EPR spectroscopy of [ 2 ..]2+ shows no evidence of coupling, and the triplet and broken symmetry solutions afforded by theoretical calculations are essentially isoenergetic. [ 2 ..]2+ is thus best described as incorporating two non‐interacting ligand radicals. Interestingly, the intense NIR intervalence charge transfer band observed for the delocalized ligand‐radical [ 1 .]+ exhibits exciton splitting in [ 2 ..]2+, due to coupling of the monomer transition dipoles in the enforced oblique dimer geometry. Evaluating the splitting of the intense intervalence charge transfer band can thus provide significant geometric and electronic information in less rigid bis‐ligand radical systems. Addition of excess pyridine to [ 2 ..]2+ results in a shift in the oxidation locus from a bis‐ligand radical species to the NiIII/NiIII derivative [ 2 (py)4]2 + , demonstrating that the ligand system can incorporate significant bulk in the axial positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号