首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 872 毫秒
1.
The influence of environmental conditions (pH, NaCl, CaCl2, and temperature) on the properties and stability of oil-in-water (O/W) emulsions containing oil droplets surrounded by one-, two-, or three-layer interfacial membranes has been investigated. Three oil-in-water emulsions were prepared with the same droplet concentration and buffer (5 wt % corn oil, 5 mM phosphate buffer, pH 6) but with different biopolymers: (i) primary emulsion: 0.5 wt % beta-Lg; (ii) secondary emulsion: 0.5 wt % beta-Lg, 0.1 wt % iota-carrageenan; (iii) tertiary emulsion: 0.5 wt % beta-Lg, 0.1 wt % iota-carrageenan, 0-2 wt % gelatin. The secondary and tertiary emulsions were prepared by electrostatic deposition of the charged biopolymers onto the surfaces of the oil droplets so as to form two- and three-layer interfacial membranes, respectively. The stability of the emulsions to pH (3-8), sodium chloride (0-500 mM), calcium chloride (0-12 mM), and thermal processing (30-90 degrees C) was determined. We found that multilayer emulsions had better stability to droplet aggregation than single-layer emulsions under certain environmental conditions and that one or more of the biopolymer layers could be made to desorb from the droplet surfaces in response to specific environmental changes (e.g., high salt or high temperature). These results suggest that the interfacial engineering technology used in this study could lead to the creation of food emulsions with improved stability to environmental stresses or to emulsions with triggered release characteristics.  相似文献   

2.
A versatile and high capacity membrane emulsification system which utilises a rotating membrane for the precision manufacture of oil-in-water (o/w) emulsions is investigated. The o/w emulsions produced used a low viscosity paraffin wax as the dispersed phase, Tween 20 or sodium dodecyl sulphate (SDS) as the emulsifier and carbomer as the stabiliser, respectively. The ability to generate coarse monodisperse emulsions was demonstrated with droplets of average diameter 80–570 μm and coefficient of variation ranging from 9.8% to 33.6%. The effects of key process parameters on the droplet size and distribution are discussed, including requirements for future developments of the membrane.  相似文献   

3.
This study focuses on the use of surface-coated reverse osmosis (RO) membranes to reduce membrane fouling in produced water purification. A series of crosslinked PEG-based hydrogels were synthesized using poly(ethylene glycol) diacrylate as the crosslinker and poly(ethylene glycol) acrylate, 2-hydroxyethyl acrylate, or acrylic acid as comonomers. The hydrogels were highly water permeable, with water permeabilities ranging from 10.0 to 17.8 (L μm)/(m2 h bar). The hydrogels were applied to a commercial RO membrane (AG brackish water RO membrane from GE Water and Process Technologies). The water flux of coated membranes and a series-resistance model were used to estimate coating thickness; the coatings were approximately 2 μm thick. NaCl rejection for both uncoated and coated membranes was 99.0% or greater, and coating the membranes appeared to increase salt rejection, in contrast to predictions from the series-resistance model. Zeta potential measurements showed a small reduction in the negative charge of coated membranes relative to uncoated RO membranes. Model oil/water emulsions were used to probe membrane fouling. Emulsions were prepared with either a cationic or an anionic surfactant. Surfactant charge played a significant role in membrane fouling even in the absence of oil. A cationic surfactant, dodecyltrimethyl ammonium bromide (DTAB), caused a strong decline in water flux while an anionic surfactant, sodium dodecyl sulfate (SDS), resulted in little or no flux decline. In the presence of DTAB, the AG RO membrane water flux immediately dropped to 30% of its initial value, but in the presence of SDS, its water flux gradually decreased to 74% of its initial value after 24 h. DTAB-fouled membranes had lower salt rejection than membranes not exposed to DTAB. In contrast, SDS-fouled membranes had higher salt rejection than membranes not exposed to SDS, with rejection values increasing, in some cases, from 99.0 to 99.8% or higher. In both surfactant tests, coated membranes exhibited less flux decline than uncoated AG RO membranes. Additionally, coated membranes experienced little fouling in the presence of an oil/water emulsion prepared from DTAB and n-decane. For example, after 24 h the water flux of the AG RO membrane fell to 26% of its initial value, while the water flux of a PEGDA-coated AG RO membrane was 73% of its initial value.  相似文献   

4.
The influence of surface and thermal denaturation of adsorbed beta-lactoglobulin (beta-Lg) on the flocculation of hydrocarbon oil droplets was measured at pH 3 and compared with that at pH 7. Oil-in-water emulsions (5 wt % n-hexadecane, 0.5 wt % beta-Lg, pH 3.0) were prepared that contained different levels of salt (0-150 mM NaCl) added immediately after homogenization. The mean particle diameter (d43) and particle size distribution of diluted emulsions were measured by laser diffraction when they were either (i) stored at 30 degrees C for 48 h or (ii) subjected to different thermal treatments (30-95 degrees C for 20 min). In the absence of salt, little droplet flocculation was observed at pH 3 or 7 because of the strong electrostatic repulsion between the droplets. In the presence of 150 mM NaCl, a progressive increase in mean particle size with time was observed in pH 7 emulsions during storage at 30 degrees C, but no significant change in mean particle diameter with time (d43 approximately 1.4 +/- 0.2 microm) was observed in the pH 3 emulsions. Droplet aggregation became more extensive in pH 7 emulsions containing salt (added before thermal processing) when they were heated above 70 degrees C, which was attributed to thermal denaturation of adsorbed beta-Lg leading to interdroplet disulfide bond formation. In contrast, the mean particle size decreased and the creaming stability improved when pH 3 emulsions were heated above 70 degrees C. These results suggest that the droplets in the pH 3 emulsions were weakly flocculated at temperatures below the thermal denaturation temperature of beta-Lg (T < 70 degrees C) but that flocs did not form so readily above this temperature, which was attributed to a reduction in droplet surface hydrophobicity due to protein conformational changes. The most likely explanation for the difference in behavior of the emulsions is that disulfide bond formation occurs much more readily at pH 7 than at pH 3.  相似文献   

5.
Terephthalic acid (TPA) is a raw material of polyester fiber and polyethylene terephthalate. When TPA is produced by catalytic air oxidation of p-xylene in the presence of acetic acid solvent, most of produced TPA exists in the form of crystalline suspended solids. A microfiltration process may be used to recover TPA, but the microfilters are subjected to fouling and therefore cleaning-in-place (CIP) regimes need to be developed. In this research, the effects of variations to CIP conditions were investigated on the flux recovery accomplished in a TiO2-sintered stainless steel microfiltration membrane (0.1 μm pore size) fouled with TPA. The extent of flux recovery was estimated as the ratio of the stabilized flux obtained during CIP to the water flux value achieved under corresponding operational conditions. Based upon batch solubility tests, sodium hydroxide (NaOH) was chosen as the major cleaning agent for the present experiment. The extent of flux recovery increased with increasing NaOH concentration over the range of 3–4% (w/v) NaOH, but decreased at NaOH concentrations above 4%. The flux recovery was favored at high cross-flow velocities, high temperatures and low transmembrane pressures. A high temperature run of cleaning did not produce any adverse effects up to 70 °C. The addition of surfactants (SDS and Tween 80) to the caustic cleaning agent led to a significant reduction in cleaning efficiency.  相似文献   

6.
This paper investigates the reversibility of membrane fouling by activated sludge in a membrane bioreactor equipped with a 0.1 μm pore ceramic membrane. The membrane was submitted to a series of tests in which the permeate flux, the transmembrane pressure (TMP) or the circulation velocity were successively varied in cycles by step increments or decreases. When the permeate flux is set below the critical flux, the TMP remains stable and fouling is reversible. On the contrary, when the critical flux is exceeded, the TMP increases and does not stabilize, as in dead-end filtration. The fouling formed is partly irreversible when the flux is lowered again. When the TMP is first increased up to 400 kPa and then decreased back at constant velocity, no hysteresis is found on the flux–TMP graph, showing that fouling is reversible in this case. Velocity cycles were performed by first lowering the velocity from 5 to 1 m/s and raising it again to 5 m/s. In this case again, the fouling induced by reducing the velocity was found to be reversible. However, when the same pressure and velocity cycle tests were performed with activated sludge collected in the aeration tank of a classical wastewater treatment plant, fouling was found to be partly irreversible, showing that the cake formed in the absence of shearing is much more cohesive. In the final part of the paper, we tested a hydrodynamic method of fouling control consisting in alternating short periods of filtration (1–4 s) and short periods of washing (1 or 2 s) at low TMP and high velocity. This method yielded to a 20% permeate flux increase with a 10% reduction in hydraulic energy consumption for classical plant activated sludge.  相似文献   

7.
The main limitation of the ultrafiltration (UF) process identified in drinking water treatment is membrane fouling. Although adsorption of natural organic matter (NOM) is known to cause irreversible fouling, operating conditions also impact the degree of irreversible fouling. This study examined the impact of several operating parameters on fouling including flux, concentrate velocity in hollow fibers, backwash frequency, and transmembrane pressure. A hydrophilic cellulose derivative membrane and a hydrophobic acrylic polymer membrane were used to conduct these tests. Pilot testing showed that when short-term reversible fouling was limited during a filtration cycle by increasing the concentrate velocity, reducing the flux, and increasing the backwash frequency, the evolution of the membrane toward irreversible fouling could be controlled. It appeared that operating parameters should be adjusted to maintain the increase of transmembrane pressure below a certain limit, determined to be approximately 0.85 to 1.0 bar for the tested UF membrane, in order to minimize the rate of irreversible fouling. This threshold for transmembrane pressure was confirmed empirically by compiling data from over 36 pilot studies. Other testing results demonstrated that hydraulic backwash effectiveness decreased as the transmembrane pressure applied in the previous filtration cycle increased. Backwash efficiency in terms of membrane flux recovery after hydraulic backwash was reduced by 50% when the transmembrane pressure was increased from 0.4 bar to 1.4 bar.  相似文献   

8.
The influence of protein concentration and order of addition relative to homogenization (before or after) on the extent of droplet flocculation in oil-in-water emulsions stabilized by a globular protein was examined using laser diffraction. n-Hexadecane (10 wt%) oil-in-water emulsions (pH 7, 150 mM NaCl) stabilized by beta-lactoglobulin (beta-Lg) were prepared by three methods: (1) 4 mg/mL beta-Lg added before homogenization; (2)10 mg/mL beta-Lg added before homogenization; (3) 4 mg/mL beta-Lg added before homogenization and 6 mg/mL beta-Lg added after homogenization. Emulsion 1 contained little nonadsorbed protein (<3%) and underwent extremely rapid and extensive droplet flocculation immediately after homogenization. Emulsion 2 contained a significant fraction of nonadsorbed beta-Lg and exhibited relatively slow droplet flocculation for some hours after homogenization. Measurements on Emulsion 3 showed that the extremely rapid particle growth observed in Emulsion 1 could be arrested by adding native beta-Lg immediately after homogenization. The extent of particle growth in the three types of emulsions was highly dependent on the time that the salt was added to the emulsions, i.e., after 0 or 24 h aging. We postulate that the observed differences are due to changes in droplet surface hydrophobicity caused by differences in the packing or conformation of adsorbed proteins. Our data suggest that history effects have a strong influence on the flocculation stability of protein-stabilized emulsions, which has important implications for the formulation and production of protein stabilized oil-in-water emulsions.  相似文献   

9.
The influence of protein concentration and order of addition relative to homogenization (before or after) on the extent of droplet flocculation in heat-treated oil-in-water emulsions stabilized by a globular protein were examined using laser diffraction. n-Hexadecane (10 wt%) oil-in-water emulsions (pH 7, 150 mM NaCl) stabilized by beta-lactoglobulin (beta-Lg) were prepared by three methods: (1) 4 mg/mL beta-Lg added before homogenization; (2) 4 mg/mL beta-Lg added before homogenization and 6 mg/mL beta-Lg added after homogenization; (3) 10 mg/mL beta-Lg added before homogenization. The emulsions were then subjected to various isothermal heat treatments (30-95 degrees C for 20 min), with the 150 mM NaCl being added either before or after heating. Emulsion 1 contained little nonadsorbed protein and exhibited extensive droplet aggregation at all temperatures, which was attributed to the fact that the droplets had a high surface hydrophobicity, e.g., due to exposed oil or extensive protein surface denaturation. Emulsions 2 and 3 contained a significant fraction of nonadsorbed beta-Lg. When the NaCl was added before heating, these emulsions were relatively stable to droplet flocculation below a critical holding temperature (75 and 60 degrees C, respectively) but showed extensive flocculation above this temperature. The stability at low temperatures was attributed to the droplets having a relatively low surface hydrophobicity, e.g., due to complete saturation of the droplet surface with protein or due to more limited surface denaturation. The instability at high temperatures was attributed to thermal denaturation of the adsorbed and nonadsorbed proteins leading to increased hydrophobic interactions between droplets. When the salt was added to Emulsions 2 and 3 after heating, little droplet flocculation was observed at high temperatures, which was attributed to the dominance of intra-membrane over inter-membrane protein-protein interactions. Our data suggests that protein concentration and order of addition have a strong influence on the flocculation stability of protein-stabilized emulsions, which has important implications for the formulation and production of many emulsion-based products.  相似文献   

10.
Two α-alumina ceramic membranes (0.2 and 0.8 μm pore sizes) and a surface-modified polyacrylonitrile membrane (0.1 μm pore size) were tested with an oily water, containing various concentrations (250–1000 ppm) of heavy crude oil droplets of 1–10 μm diameter. Significant fouling and flux decline were observed. Typical final flux values (at the end of experiments with 2 h of filtration) for membranes at 250 ppm oil in the feed are ≈30–40 kg m−2 h−1. Increased oil concentrations in the feed decreased the final flux, whereas the crossflow rate, transmembrane pressure, and temperature appeared to have relatively little effect on the final flux. In all cases, the permeate was of very high quality, containing <6 ppm total hydrocarbons. The addition of suspended solids increased the final membrane flux by one order of magnitude. It is thought that the suspended solids adsorb the oil, break up the oil layer, and act as a dynamic or secondary membrane which reduces fouling of the underlying primary membrane. Resistance models were used to characterize the type of fouling that occurs. Both the 0.2 μm and the 0.8 μm ceramic membranes appeared to exhibit internal fouling followed by external fouling, whereas external fouling characterized the behavior of the 0.1 μm polymer membrane from the beginning of filtration. Examination of the external fouling layer showed a very thin hydrophobic oil layer adsorbed to the membrane surface. This oil layer made the membrane surface hydrophobic, as demonstrated by increased water-contact angles. The oil layer proved resistant to removal by hydrodynamic (shear) methods. By extracting the oil layer with tetrachloroethylene, followed by IR analysis, its average thickness at the end of a 2 h experiment under typical conditions was determined to be 60 μm for the 0.2 μm ceramic membrane and 30 μm for the 0.1 μm polymer membrane. These measured amounts of oil associated with the membrane at the end of the experiments are in good agreement with those determined from a simple mass balance, in which it is assumed that all of the oil associated with the permeate collected is retained on or in the membrane, indicating that the tangential flow did not sweep the rejected oil layer to the filter exit.  相似文献   

11.
The effect of operating parameters on fouling of a ceramic microfiltration membrane by corn starch hydrolysate of 95 dextrose equivalence was studied. Transmembrane pressures above 100 kPa had little or no effect on flux. Cross-flow velocity had a significant beneficial effect. The rate of flux decline was reduced significantly when the feed was adjusted from its natural pH of 4.2 to 10. However, this resulted in a dark brown clarified syrup (permeate). Scanning electron microscopy showed extensive fouling layers on the alumina surface with conventionally processed dextrose solutions and the least fouling layer with corn starch hydrolysate adjusted to pH 10. Maximum steady state flux for unconcentrated hydrolysate at its natural pH was 178 LMH obtained at low transmembrane pressures (103 kPa, 15 psi) and high cross-flow velocities (5 m s−1). Adjustment of the pH to 10 can increase the flux by 40%.  相似文献   

12.
This letter presents a simple way to prepare monodisperse O/W and W/O emulsions in the same T-junction microfluidic device just by changing the wetting properties of the microchannel wall with different surfactants. Highly uniform droplets ranging from 50 to 400 mum with a polydispersity index (sigma) value of less than 2% were successfully prepared. With the change in surfactants and surfactant concentrations, the interfacial tension and the wetting properties varied, and disordered or ordered two-phase flow patterns could be controllable. Monodisperse O/W and W/O emulsions were prepared under the action of a cross-flowing shear force or a perpendicular shear force by using an oil solution with 0.1-2.0 wt % Span 80 and an aqueous solution with 0.1-2.0 wt % Tween 20 as a continuous-phase flow, respectively. It gives a controllable method of preparing O/W and W/O emulsions in the same microfluidic device.  相似文献   

13.
Brownian diffusion of fluorescent microspheres (0.21, 0.5, and 0.89 microm diameter) in conjunction with confocal microscopy has been used to monitor the microrheology of phase-separated regions in a protein-stabilized oil-in-water emulsion containing various low concentrations of a nonadsorbing polysaccharide, xanthan gum. The sensitivity and reliability of the technique has been demonstrated in test experiments on (i) aqueous glycerol solutions and (ii) concentrated surfactant-stabilized emulsions (30-60 vol % oil, 1-2 wt % Tween 20). From particle tracking measurements on the caseinate-stabilized emulsions (30 vol % oil, 1.4 wt % sodium caseinate, pH 7) containing xanthan (0.03-0.07 wt %), the apparent viscosity in the oil-droplet-rich regions has been estimated to be up to 10(3) times higher than that in the phase-separated xanthan-rich regions. This means that our previously determined shape relaxation times for xanthan-containing blobs in the same systems can be attributed to the dominant viscoelasticity of the surrounding regions of concentrated oil droplets and not to the rheology of the xanthan-rich blobs themselves. These data provide clear and unequivocal evidence for the dominant role of the interconnected depletion-flocculated network of oil droplets in the physicochemical mechanism by which hydrocolloid thickeners control the creaming instability of concentrated oil-in-water emulsions.  相似文献   

14.
《先进技术聚合物》2018,29(2):795-805
In this research, composite membranes were prepared by cross‐linking of poly(vinyl alcohol) (PVA) and glutaraldehyde (GA) on amidoximated ultrafiltration membrane. During this procedure, it was taken advantage of large‐area graphene oxide sheets as graphitic nets in the active layer. These membranes were used to remove an industrial textile dye (Chrysophenine GX) from wastewater. Optimum condition for membrane preparation was 1.5% wt. of PVA, 1.5% wt. of GA, and 0.3% wt. of graphene oxide sheets. Permeation results showed that electrostatic charges on membrane surface have easily converted from positive into negative ones. Contact angle was significantly decreased (63.5° to 28.8°). Final nanofiltration membrane showed lowest fouling rate during removing the industrial direct dye (flux recovery ratio: 96.60%, reversible fouling ratio: 23.82%, and irreversible fouling ratio: 3.39%). Pore size of this membrane was <8 nm, and Chrysophenine GX was eliminated by 98.5% with water permeability of 12.23 L/m2.h.bar.  相似文献   

15.
To investigate the effect of the droplet/pore size ratio on membrane demulsification, water-in-oil (W/O) emulsions with uniform-sized droplets was demulsified by permeation through Shirasu-porous-glass (SPG) membranes with a narrow pore size distribution at mean droplet/pore diameter ratios of 0.52–5.75. At transmembrane pressures above a critical pressure, the water droplets larger than the membrane pore size were demulsified, where the SPG membrane acted as a coalescer because the hydrophilic membrane surface had a high affinity for the water droplets. By contrast, at transmembrane pressures below the critical pressure, the larger water droplets were all retained by the membrane due to the sieving effect of the uniform-sized pores. When a W/O emulsion with a mean droplet diameter of 2.30 μm was allowed to permeate through a membrane with a mean pore diameter of 0.86 μm, the demulsification efficiency increased with increasing transmembrane pressure, to a maximum value of 91% at a transmembrane pressure of 392 kPa, and then decreased, while the transmembrane flux increased almost linearly with increasing transmembrane pressure. The demulsification efficiency was higher for higher water phase content and lower concentration of the surfactant, tetraglycerin condensed ricinoleic acid ester, in the emulsions due to the reduction of the emulsion stability.  相似文献   

16.
Using the resistance-in-series (RIS) approach to permeate flux modeling, a general relationship between permeate flux, transmembrane pressure, cross-flow velocity, and feed kinematic viscosity was developed for the tubular ultrafiltration (UF) of synthetic oil-in-water emulsions. The fouling layer resistance, Rf, was 63% of the total membrane resistance, Rm′; however, concentration polarization was the predominant factor controlling resistance in the tubular UF system. An explicit form of the resistance index, Φ, was postulated based on the observed interactions between Φ, cross-flow velocity and feed kinematic viscosity and the RIS model was modified to further describe the interactions between permeate flux and operational parameters. The modified model adequately predicted flux–pressure data over the range of experimental variables examined in this study. Additionally, a set point operating pressure was determined as a function of cross-flow velocity and feed viscosity to achieve a balance between polarization and total membrane resistance.  相似文献   

17.
The objective of this study was to establish the influence of polyelectrolyte characteristics (molecular weight and charge density) on the properties of oil-in-water emulsions containing oil droplets surrounded by surfactant-polyelectrolyte layers. A surfactant-stabilized emulsion containing small droplets (d32 approximately 0.3 microm) was prepared by homogenizing 20 wt% corn oil with 80 wt% emulsifier solution (20 mM SDS or 2.5 wt% Tween 20, 100 mM acetate buffer, pH 3) using a high-pressure valve homogenizer. This primary emulsion was then diluted with various chitosan solutions to produce secondary emulsions with a range of chitosan concentrations (3 wt% corn oil, 0-1 wt% chitosan). The influence of the molecular characteristics of chitosan on the properties of these emulsions was examined by using chitosan ingredients with different molecular weights (MW approximately 15, 145, and 200 kDa) and degree of deacetylation (DDA approximately 40, 77, and 92%). The electrical charge and particle size of the secondary emulsions were then measured. Extensive droplet aggregation occurred when the chitosan concentration was below the amount required to saturate the droplet surfaces, but stable emulsions could be formed at higher chitosan concentrations. The zeta-potential and mean diameter (d32) of the particles in the secondary emulsions was not strongly influenced by chitosan MW, however the chitosan with the lowest DDA (40%) produced droplets with smaller mean diameters and zeta-potentials than the other two DDA samples examined. Interestingly, we found that stable multilayer emulsions could be formed by mixing medium or high MW chitosan with an emulsion stabilized by a non-ionic surfactant (Tween 20) due to the fact the initial droplets had some negative charge. The information obtained from this study is useful for preparing emulsions stabilized by multilayer interfacial layers.  相似文献   

18.
The ultrafiltration of two types of surfactants, sodium dodecyl sulfate (SDS, anionic) and Tergitol NP-9 (nonylphenol polyethylene glycol ether, nonionic), using a 20 nm ZrO2 tubular membrane was investigated. The influence of crossflow velocity, temperature, pressure, and surfactant concentration on the permeate flux, close to and above the critical micelle concentration (CMC), is reported. Permeate flux and surfactant retention were measured in order to evaluate concentration polarization and fouling phenomena, and also the variation of these parameters due to surfactant/membrane interactions. High surfactant retentions (60–70%) were achieved depending on the feed concentration.  相似文献   

19.
The conventional operating membrane of a laboratory membrane filtration process is to apply controlled transmembrane pressures to the retentate side of the membrane, with the permeate side open ended. Often the minimum transmembrane pressure available is sufficient to cause membrane fouling in a given system. A membrane rig has been built which monitors transmembrane pressure in increments of 0.001 bar and by pumping permeate at a specified rate controls the flux to be constant. The technique used allows sensitive detection of trace fouling. Under a variety of low flux conditions fouling was not observed and it was found to be useful to produce an experimentally related definition of two types of critical flux. In the first definition a `strong form' of critical flux exists if the flux of a suspension is identical to the flux of clean water at the same transmembrane pressure. In the second definition a `weak form' of the critical flux exists if the relationship between transmembrane pressure and flux is linear, but the slope of the line differs from that for clean water. This paper describes how the use of this operating mode led to the successful experimental measurements of critical fluxes for two colloidal silica suspensions, BSA solution and a baker's yeast suspension with a 50k MWCO membrane. These measurements could not be made successfully in constant-pressure mode. The paper also reports experimental evidence in support of a `strong form' of the critical flux for the filtration of X30 silica suspension. Finally, we report the effect of membrane pore size on critical flux measurements for the three types of feed fluids.  相似文献   

20.
An oil-in-water emulsion (5 wt% corn oil, 0.5 wt% beta-lactoglobulin (beta-Lg), 0.1 wt% iota-carrageenan, 5 mM phosphate buffer, pH 6.0) containing anionic droplets stabilized by interfacial membranes comprising of beta-lactoglobulin and iota-carrageenan was produced using a two-stage process. A primary emulsion containing anionic beta-Lg coated droplets was prepared by homogenizing oil and emulsifier solution together using a high-pressure valve homogenizer. A secondary emulsion containing beta-Lg-iota-carrageenan coated droplets was formed by mixing the primary emulsion with an aqueous iota-carrageenan solution. The stability of primary and secondary emulsions to sodium chloride (0-500 mM), calcium chloride (0-12 mM), and thermal processing (30-90 degrees C) were analyzed using zeta-potential, particle size and creaming stability measurements. The secondary emulsion had better stability to droplet aggregation than the primary emulsion at NaCl 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号