首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 902 毫秒
1.
Consider the stationary Navier–Stokes equations in an exterior domain $\varOmega \subset \mathbb{R }^3 $ with smooth boundary. For every prescribed constant vector $u_{\infty } \ne 0$ and every external force $f \in \dot{H}_2^{-1} (\varOmega )$ , Leray (J. Math. Pures. Appl., 9:1–82, 1933) constructed a weak solution $u $ with $\nabla u \in L_2 (\varOmega )$ and $u - u_{\infty } \in L_6(\varOmega )$ . Here $\dot{H}^{-1}_2 (\varOmega )$ denotes the dual space of the homogeneous Sobolev space $\dot{H}^1_{2}(\varOmega ) $ . We prove that the weak solution $u$ fulfills the additional regularity property $u- u_{\infty } \in L_4(\varOmega )$ and $u_\infty \cdot \nabla u \in \dot{H}_2^{-1} (\varOmega )$ without any restriction on $f$ except for $f \in \dot{H}_2^{-1} (\varOmega )$ . As a consequence, it turns out that every weak solution necessarily satisfies the generalized energy equality. Moreover, we obtain a sharp a priori estimate and uniqueness result for weak solutions assuming only that $\Vert f\Vert _{\dot{H}^{-1}_2(\varOmega )}$ and $|u_{\infty }|$ are suitably small. Our results give final affirmative answers to open questions left by Leray (J. Math. Pures. Appl., 9:1–82, 1933) about energy equality and uniqueness of weak solutions. Finally we investigate the convergence of weak solutions as $u_{\infty } \rightarrow 0$ in the strong norm topology, while the limiting weak solution exhibits a completely different behavior from that in the case $u_{\infty } \ne 0$ .  相似文献   

2.
Let $p>1$ . We study the behavior of certain positive and nodal solutions of the problem $$\begin{aligned} \left\{ \,\, \begin{array}{lll} -\Delta _p u=\lambda |u|^{q-2}u \ \ &{}\mathrm{in} \ \ &{}{\varOmega } \\ u=0 &{}\mathrm{in} \ \ &{}\partial {\varOmega } \end{array}\right. \end{aligned}$$ on varying of the parameters $\lambda >0$ and $q>1$ .  相似文献   

3.
Let Ω be a cone in ${\mathbb {R}^{n}}$ with n ≥? 2. For every fixed ${\alpha \in \mathbb {R}}$ we find the best constant in the Rellich inequality ${\int\nolimits_{\Omega}|x|^{\alpha}|\Delta u|^{2}dx \ge C\int\nolimits_{\Omega}|x|^{\alpha-4}|u|^{2}dx}$ for ${u \in C^{2}_{c}(\overline\Omega\setminus\{0\})}$ . We also estimate the best constant for the same inequality on ${C^{2}_{c}(\Omega)}$ . Moreover we show improved Rellich inequalities with remainder terms involving logarithmic weights on cone-like domains.  相似文献   

4.
Let G be a commutative group, written additively, with a neutral element 0, and let K be a finite group. Suppose that K acts on G via group automorphisms ${G \ni a \mapsto ka \in G}$ , ${k \in K}$ . Let ${{\mathfrak{H}}}$ be a complex Hilbert space and let ${{\mathcal L}({\mathfrak{H}})}$ be the algebra of all bounded linear operators on ${{\mathfrak{H}}}$ . A mapping ${u \colon G \to {\mathcal L}({\mathfrak{H}})}$ is termed a K-spherical function if it satisfies (1) ${|K|^{-1} \sum_{k\in K} u (a+kb)=u (a) u (b)}$ for any ${a,b\in G}$ , where |K| denotes the cardinality of K, and (2) ${u (0) = {\rm id}_{\mathfrak {H}},}$ where ${{\rm id}_{\mathfrak {H}}}$ designates the identity operator on ${{\mathfrak{H}}}$ . The main result of the paper is that for each K-spherical function ${u \colon G \to {\mathcal {L}}({\mathfrak {H}})}$ such that ${\| u \|_{\infty} = \sup_{a\in G} \| u (a)\|_{{\mathcal L}({\mathfrak{H}})} < \infty,}$ there is an invertible operator S in ${{\mathcal L}({\mathfrak{H}})}$ with ${\| S \| \, \| S^{-1}\| \leq |K| \, \| u \|_{\infty}^2}$ such that the K-spherical function ${{\tilde{u}} \colon G \to {\mathcal L}({\mathfrak{H}})}$ defined by ${{\tilde{u}}(a) = S u (a) S^{-1},\,a \in G,}$ satisfies ${{\tilde{u}}(-a) = {\tilde{u}}(a)^*}$ for each ${a \in G}$ . It is shown that this last condition is equivalent to insisting that ${{\tilde{u}}(a)}$ be normal for each ${a \in G}$ .  相似文献   

5.
This paper is concerned with power concavity properties of the solution to the parabolic boundary value problem $$\begin{aligned} (P)\quad \left\{ \begin{array}{l@{\quad }l} \partial _t u=\varDelta u +f(x,t,u,\nabla u) &{} \text{ in }\quad \varOmega \times (0,\infty ),\\ u(x,t)=0 &{} \text{ on }\quad \partial \varOmega \times (0,\infty ),\\ u(x,0)=0 &{} \text{ in }\quad \varOmega , \end{array} \right. \end{aligned}$$ where $\varOmega $ is a bounded convex domain in $\mathbf{R}^n$ and $f$ is a nonnegative continuous function in $\varOmega \times (0,\infty )\times \mathbf{R}\times \mathbf{R}^n$ . We give a sufficient condition for the solution of $(P)$ to be parabolically power concave in $\overline{\varOmega }\times [0,\infty )$ .  相似文献   

6.
We study the following nonlinear elliptic system of Lane–Emden type $$\left\{\begin{array}{ll} -\Delta u = {\rm sgn}(v) |v| ^{p-1} \qquad \qquad \qquad \; {\rm in} \; \Omega , \\ -\Delta v = - \lambda {\rm sgn} (u)|u| \frac{1}{p-1} + f(x, u)\; \; {\rm in}\; \Omega , \\ u = v = 0 \qquad \qquad \qquad \quad \quad \;\;\;\;\; {\rm on}\; \partial \Omega , \end{array}\right.$$ where ${\lambda \in \mathbb{R}}$ . If ${\lambda \geq 0}$ and ${\Omega}$ is an unbounded cylinder, i.e., ${\Omega = \tilde \Omega \times \mathbb{R}^{N-m} \subset \mathbb{R}^{N}}$ , ${N - m \geq 2, m \geq 1}$ , existence and multiplicity results are proved by means of the Principle of Symmetric Criticality and some compact imbeddings in partially spherically symmetric spaces. We are able to state existence and multiplicity results also if ${\lambda \in \mathbb{R}}$ and ${\Omega}$ is a bounded domain in ${\mathbb{R}^{N}, N \geq 3}$ . In particular, a good finite dimensional decomposition of the Banach space in which we work is given.  相似文献   

7.
We provide two sharp sufficient conditions for immersed Willmore surfaces in $\mathbb{R }^3$ to be already minimal surfaces, i.e. to have vanishing mean curvature on their entire domains. These results turn out to be particularly suitable for applications to Willmore graphs. We can therefore show that Willmore graphs on bounded $C^4$ -domains $\overline{\varOmega }$ with vanishing mean curvature on the boundary $\partial \varOmega $ must already be minimal graphs, which in particular yields some Bernstein-type result for Willmore graphs on $\mathbb{R }^2$ . Our methods also prove the non-existence of Willmore graphs on bounded $C^4$ -domains $\overline{\varOmega }$ with mean curvature $H$ satisfying $H \ge c_0>0 \,{\text{ on }}\, \partial \varOmega $ if $\varOmega $ contains some closed disc of radius $\frac{1}{c_0} \in (0,\infty )$ , and they yield that any closed Willmore surface in $\mathbb{R }^3$ which can be represented as a smooth graph over $\mathbb{S }^2$ has to be a round sphere. Finally, we demonstrate that our results are sharp by means of an examination of some certain part of the Clifford torus in $\mathbb{R }^3$ .  相似文献   

8.
In this paper we prove the existence of a nontrivial non-negative radial solution for the quasilinear elliptic problem $$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} -\nabla \cdot \left[\phi ^{\prime }(|\nabla u|^2)\nabla u \right] +|u|^{\alpha -2}u =|u|^{s-2} u,&x\in \mathbb{R }^{N},\\ u(x) \rightarrow 0, \quad \text{ as} |x|\rightarrow \infty , \end{array} \right. \end{aligned}$$ where $N\ge 2, \phi (t)$ behaves like $t^{q/2}$ for small $t$ and $t^{p/2}$ for large $t, 1< p<q<N, 1<\alpha \le p^* q^{\prime }/p^{\prime }$ and $\max \{q,\alpha \}< s<p^*,$ being $p^*=\frac{pN}{N-p}$ and $p^{\prime }$ and $q^{\prime }$ the conjugate exponents, respectively, of $p$ and $q$ . Our aim is to approach the problem variationally by using the tools of critical points theory in an Orlicz-Sobolev space. A multiplicity result is also given.  相似文献   

9.
In this paper, we consider the complex Ginzburg–Landau equation ${u_t = e^{i\theta} [\Delta u + |u|^\alpha u] + \gamma u}$ on ${\mathbb{R}^N}$ , where ${\alpha > 0,\,\gamma \in \mathbb{R}}$ and ${-\pi /2 < \theta < \pi /2}$ . By convexity arguments, we prove that, under certain conditions on ${\alpha,\theta,\gamma}$ , a class of solutions with negative initial energy blows up in finite time.  相似文献   

10.
We consider the steady Navier–Stokes equations in the punctured regions (?) Ω?=?Ω 0 \ {o} (with {o}Ω 0) and (??) $ \varOmega ={{\mathbb{R}}^2}\backslash \left( {{{\overline{\varOmega}}_0}\cup \left\{ o \right\}} \right) $ (with $ \left\{ o \right\}\notin {{\overline{\varOmega}}_0} $ ), where Ω 0 is a simple connected Lipschitz bounded domain of $ {{\mathbb{R}}^2} $ . We regard o as a sink or a source in the fluid. Accordingly, we assign the flux $ \mathcal{F} $ through a small circumference surrounding o and a boundary datum a on Γ?=? 0 such that the total flux $ \mathcal{F}+\int\nolimits_{\varGamma } {\boldsymbol{a}\cdot \boldsymbol{n}} $ is zero in case (?). We prove that if $ \left| \mathcal{F} \right|<2\pi \nu $ and $ \left| \mathcal{F} \right|+\left| {\int\nolimits_{\varGamma } {\boldsymbol{a}\cdot \boldsymbol{n}} } \right|<2\pi \nu $ in (?) and (??), respectively, where ν is the kinematical viscosity, then the problem has a C solution in Ω, which behaves at o like the gradient of the fundamental solution of the Laplace equation.  相似文献   

11.
We consider the problem $$\begin{aligned} -\Delta u=\varepsilon ^{2}e^{u}- \frac{1}{|\Omega |}\int _\Omega \varepsilon ^{2} e^{u}+ {4\pi N\over |\Omega |} - 4 \pi N\delta _p, \quad \text{ in} {\Omega }, \quad \int _\Omega u=0 \end{aligned}$$ in a flat two-torus $\Omega $ with periodic boundary conditions, where $\varepsilon >0,\,|\Omega |$ is the area of the $\Omega $ , $N>0$ and $\delta _p$ is a Dirac mass at $p\in \Omega $ . We prove that if $1\le m<N+1$ then there exists a family of solutions $\{u_\varepsilon \}_{\varepsilon }$ such that $\varepsilon ^{2}e^{u_\varepsilon }\rightharpoonup 8\pi \sum _{i=1}^m\delta _{q_i}$ as $\varepsilon \rightarrow 0$ in measure sense for some different points $q_{1}, \ldots , q_{m}$ . Furthermore, points $q_i$ , $i=1,\dots ,m$ are different from $p$ .  相似文献   

12.
This paper is concerned with the existence, multiplicity and concentration behavior of positive solutions for the critical Kirchhoff-type problem $$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} -\left(\varepsilon ^2a+\varepsilon b\int _{\mathbb{R }^{3}}|\nabla u|^2\right)\Delta u+V(x)u=u^{2^*-1}+\lambda f(u)&\text{ in}~{\mathbb{R }^{3}},\\ u\in H^1({\mathbb{R }^{3}}), ~u(x)>0&\text{ in}~{\mathbb{R }^{3}}, \end{array}\right. \end{aligned}$$ where $\varepsilon $ and $\lambda $ are positive parameters, and $a,b>0$ are constants, $2^*(=6)$ is the critical Sobolev exponent in dimension three, $V$ is a positive continuous potential satisfying some conditions, and $f$ is a subcritical nonlinear term. We use the variational methods to relate the number of solutions with the topology of the set where $V$ attains its minimum, for all sufficiently large $\lambda $ and small $\varepsilon $ .  相似文献   

13.
In this paper, we will prove the existence of infinitely many solutions for the following elliptic problem with critical Sobolev growth and a Hardy potential: $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2}u+a u\quad {\rm in}\;\Omega,\quad u=0 \quad {\rm on}\; \partial\Omega,\qquad (*)$$ under the assumptions that N ≥ 7, ${\mu\in \left[0,\frac{(N-2)^2}4-4\right)}$ and a > 0, where ${2^{\ast}=\frac{2N}{N-2}}$ , and Ω is an open bounded domain in ${\mathbb{R}^N}$ which contains the origin. To achieve this goal, we consider the following perturbed problem of (*), which is of subcritical growth, $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2-\varepsilon_n}u+au \quad {\rm in}\,\Omega, \quad u=0 \quad {\rm on}\;\partial\Omega,\qquad(\ast\ast)_n$$ where ${\varepsilon_{n} > 0}$ is small and ${\varepsilon_n \to 0}$ as n → + ∞. By the critical point theory for the even functionals, for each fixed ${\varepsilon_{n} > 0}$ small, (**) n has a sequence of solutions ${u_{k,\varepsilon_{n}} \in H^{1}_{0}(\Omega)}$ . We obtain the existence of infinitely many solutions for (*) by showing that as n → ∞, ${u_{k,\varepsilon_{n}}}$ converges strongly in ${H^{1}_{0}(\Omega)}$ to u k , which must be a solution of (*). Such a convergence is obtained by applying a local Pohozaev identity to exclude the possibility of the concentration of ${\{u_{k,\varepsilon_n}\}}$ .  相似文献   

14.
In this paper, we are concerned with the multibump solutions for the following quasilinear Schrödinger system in ${\mathbb{R}^N}$ : $$\left\{\begin{array}{ll}-\Delta{u} + \lambda{a(x)u} - \frac{1}{2}(\Delta|u|^2)u = \frac{2\alpha}{\alpha + \beta}|u|^{\alpha-2}|\upsilon|^\beta u, \\-\Delta{\upsilon} + \lambda{b(x)\upsilon} - \frac{1}{2}(\Delta|\upsilon|^2)\upsilon = \frac{2\beta}{\alpha + \beta}|u|^\alpha|\upsilon|^{\beta-2} \upsilon, \\u(x) \rightarrow 0, \upsilon(x) \rightarrow 0 \quad as|x| \rightarrow \infty,\end{array}\right.$$ where λ > 0 is a parameter, α, β > 2 satisfying αβ < 2 · 2*, here ${2^{*} = \frac{2N}{N-2}}$ is the critical Sobolev exponent for ${N \geq 3}$ and a(x), b(x) are nonnegative potentials. Using variational methods, we prove that if the zero sets of a(x) and b(x) have several common isolated connected components ${\Omega_{1}, . . . ,\Omega_{k}}$ such that the interior of ${\Omega_{i} (i = 1, 2, . . . , k)}$ is not empty and ${\partial\Omega_{i} (i = 1, 2, . . . , k)}$ is smooth, then for λ sufficiently large, the system admits, for any nonempty subset ${J \subset \{1, 2, . . . , k\}}$ , a solution which is trapped in a neighborhood of ${\cup_{j\epsilon{J}} \Omega_{j}}$ .  相似文献   

15.
16.
Let Ω be a bounded, smooth domain in ${\mathbb{R}^2}$ . We consider the functional $$I(u) = \int_\Omega e^{u^2}\,dx$$ in the supercritical Trudinger-Moser regime, i.e. for ${\int_\Omega |\nabla u|^2dx > 4\pi}$ . More precisely, we are looking for critical points of I(u) in the class of functions ${u \in H_0^1 (\Omega )}$ such that ${\int_\Omega |\nabla u|^2 \, dx = 4\, \pi \, k\, (1+\alpha)}$ , for small α > 0. In particular, we prove the existence of 1-peak critical points of I(u) with ${\int_\Omega |\nabla u|^2dx = 4\pi(1 + \alpha)}$ for any bounded domain Ω, 2-peak critical points with ${\int_\Omega |\nabla u|^2dx = 8\pi(1 + \alpha)}$ for non-simply connected domains Ω, and k-peak critical points with ${\int_\Omega |\nabla u|^2 dx = 4k \pi(1 + \alpha)}$ if Ω is an annulus.  相似文献   

17.
We study the a priori estimates, existence/nonexistence of radial sign changing solution, and the Palais–Smale characterisation of the problem ${-\Delta_{{\mathbb B}^{N}}u - \lambda u = |u|^{p-1}u, u\in H^1({\mathbb B}^{N})}$ in the hyperbolic space ${{\mathbb B}^{N}}$ where ${1 < p\leq\frac{N+2}{N-2}}$ . We will also prove the existence of sign changing solution to the Hardy–Sobolev–Mazya equation and the critical Grushin problem.  相似文献   

18.
19.
Let $G$ denote a closed, connected, self-adjoint, noncompact subgroup of $GL(n,\mathbb R )$ , and let $d_{R}$ and $d_{L}$ denote respectively the right and left invariant Riemannian metrics defined by the canonical inner product on $M(n,\mathbb R ) = T_{I} GL(n,\mathbb R )$ . Let $v$ be a nonzero vector of $\mathbb R ^{n}$ such that the orbit $G(v)$ is unbounded in $\mathbb R ^{n}$ . Then the function $g \rightarrow d_{R}(g, G_{v})$ is unbounded, where $G_{v} = \{g \in G : g(v) = v \}$ , and we obtain algebraically defined upper and lower bounds $\lambda ^{+}(v)$ and $\lambda ^{-}(v)$ for the asymptotic behavior of the function $\frac{log|g(v)|}{d_{R}(g, G_{v})}$ as $d_{R}(g, G_{v}) \rightarrow \infty $ . The upper bound $\lambda ^{+}(v)$ is at most 1. The orbit $G(v)$ is closed in $\mathbb R ^{n} \Leftrightarrow \lambda ^{-}(w)$ is positive for some w $\in G(v)$ . If $G_{v}$ is compact, then $g \rightarrow |d_{R}(g,I) - d_{L}(g,I)|$ is uniformly bounded in $G$ , and the exponents $\lambda ^{+}(v)$ and $\lambda ^{-}(v)$ are sharp upper and lower asymptotic bounds for the functions $\frac{log|g(v)|}{d_{R}(g,I)}$ and $\frac{log|g(v)|}{d_{L}(g,I)}$ as $d_{R}(g,I) \rightarrow \infty $ or as $d_{L}(g,I) \rightarrow \infty $ . However, we show by example that if $G_{v}$ is noncompact, then there need not exist asymptotic upper and lower bounds for the function $\frac{log|g(v)|}{d_{L}(g, G_{v})}$ as $d_{L}(g, G_{v}) \rightarrow \infty $ . The results apply to representations of noncompact semisimple Lie groups $G$ on finite dimensional real vector spaces. We compute $\lambda ^{+}$ and $\lambda ^{-}$ for the irreducible, real representations of $SL(2,\mathbb R )$ , and we show that if the dimension of the $SL(2,\mathbb R )$ -module $V$ is odd, then $\lambda ^{+} = \lambda ^{-}$ on a nonempty open subset of $V$ . We show that the function $\lambda ^{-}$ is $K$ -invariant, where $K = O(n,\mathbb R ) \cap G$ . We do not know if $\lambda ^{-}$ is $G$ -invariant.  相似文献   

20.
We study limit behavior for sums of the form $\frac{1}{|\Lambda_{L|}}\sum_{x\in \Lambda_{L}}u(t,x),$ where the field $\Lambda_L=\left\{x\in {\bf{Z^d}}:|x|\le L\right\}$ is composed of solutions of the parabolic Anderson equation $$u(t,x) = 1 + \kappa \mathop{\int}_{0}^{t} \Delta u(s,x){\rm d}s + \mathop{\int}_{0}^{t}u(s,x)\partial B_{x}(s). $$ The index set is a box in Z d , namely $\Lambda_{L} = \left\{x\in {\bf Z}^{\bf d} : |x| \leq L\right\}$ and L = L(t) is a nondecreasing function $L : [0,\infty)\rightarrow {\bf R}^{+}. $ We identify two critical parameters $\eta(1) < \eta(2)$ such that for $\gamma > \eta(1)$ and L(t) = eγ t , the sums $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ satisfy a law of large numbers, or put another way, they exhibit annealed behavior. For $\gamma > \eta(2)$ and L(t) = eγ t , one has $\sum_{x\in \Lambda_L}u(t,x)$ when properly normalized and centered satisfies a central limit theorem. For subexponential scales, that is when $\lim_{t \rightarrow \infty} \frac{1}{t}\ln L(t) = 0,$ quenched asymptotics occur. That means $\lim_{t\rightarrow \infty}\frac{1}{t}\ln\left (\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)\right) = \gamma(\kappa),$ where $\gamma(\kappa)$ is the almost sure Lyapunov exponent, i.e. $\lim_{t\rightarrow \infty}\frac{1}{t}\ln u(t,x)= \gamma(\kappa).$ We also examine the behavior of $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ for L = e γ t with γ in the transition range $(0,\eta(1))$   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号