首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
This work presents chaos synchronization between two different hyperchaotic systems using adaptive control. The sufficient conditions for achieving synchronization of two high dimensional chaotic systems are derived based on Lyapunov stability theory, and an adaptive control law and a parameter update rule for unknown parameters are given such that generalized Henon–Heiles system is controlled to be hyperchaotic Chen system. Theoretical analysis and numerical simulations are shown to verify the results.  相似文献   

2.
Base on the stability theory of fractional order system, this work mainly investigates modified projective synchronization of two fractional order hyperchaotic systems with unknown parameters. A controller is designed for synchronization of two different fractional order hyperchaotic systems. The method is successfully applied to modified projective synchronization between fractional order Rössler hyperchaotic system and fractional order Chen hyperchaotic system, and numerical simulations illustrate the effectiveness of the obtained results.  相似文献   

3.
In this work, we discuss the stability conditions for a nonlinear fractional-order hyperchaotic system. The fractional-order hyperchaotic Novel and Chen systems are introduced. The existence and uniqueness of solutions for two classes of fractional-order hyperchaotic Novel and Chen systems are investigated. On the basis of the stability conditions for nonlinear fractional-order hyperchaotic systems, we study synchronization between the proposed systems by using a new nonlinear control technique. The states of the fractional-order hyperchaotic Novel system are used to control the states of the fractional-order hyperchaotic Chen system. Numerical simulations are used to show the effectiveness of the proposed synchronization scheme.  相似文献   

4.
To date, there have been many results about unidirectionally coupled synchronization of chaotic systems. However, much less work is reported on bidirectionally-coupled synchronization. In this paper, we investigate the synchronization of two bidirectionally coupled Chen hyperchaotic systems, which are coupled linearly and nonlinearly respectively. Firstly, linearly coupled synchronization of two hyperchaotic Chen systems is investigated, and a theorem on how to choose the coupling coefficients are developed to guarantee the global asymptotical synchronization of two coupled hyperchaotic systems. Analysis shows that the choice of the coupling coefficients relies on the bound of the chaotic system. Secondly, the nonlinearly coupled synchronization is studied; a sufficient condition for the locally asymptotical synchronization is derived, which is independent of the bound of the hyperchaotic system. Finally, numerical simulations are included to verify the effectiveness and feasibility of the developed theorems.  相似文献   

5.
In this paper, synchronization of hyperchaotic system is discussed. Based on the stability theory in the cascade system, a simple linear feedback law is presented to realize synchronization of hyperchaotic systems. Simulation results are given to illustrate the effectiveness of the proposed method.  相似文献   

6.
In the present article, the authors have proposed a modified projective adaptive synchronization technique for fractional‐order chaotic systems. The adaptive projective synchronization controller and identification parameters law are developed on the basis of Lyapunov direct stability theory. The proposed method is successfully applied for the projective synchronization between fractional‐order hyperchaotic Lü system as drive system and fractional‐order hyperchaotic Lorenz chaotic system as response system. A comparison between the effects on synchronization time due to the presence of fractional‐order time derivatives for modified projective synchronization method and proposed modified adaptive projective synchronization technique is the key feature of the present article. Numerical simulation results, which are carried out using Adams–Boshforth–Moulton method show that the proposed technique is effective, convenient and also faster for projective synchronization of fractional‐order nonlinear dynamical systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This letter presents chaos synchronization problem of two different hyperchaotic systems when the parameters of drive and response systems are fully unknown or uncertain. Based on Lyapunov stability theory, an adaptive control law and a parameter update rule for unknown parameters are derived such that two different high dimensional chaotic systems are to be synchronized. Hyperchaotic Chen system and Second-harmonic generation (SHG) system are taken as an illustrative example to show the effectiveness of the proposed method.  相似文献   

8.
This paper introduces a novel type of synchronization, where two chaotic systems synchronize up to an arbitrary scaling matrix. In particular, each drive system state synchronizes with a linear combination of response system states by using a single synchronizing signal. The proposed observer-based method exploits a theorem that assures asymptotic synchronization for a wide class of continuous-time chaotic (hyperchaotic) systems. Two examples, involving Rössler’s system and a hyperchaotic oscillator, show that the proposed technique is a general framework to achieve any type of synchronization defined to date.  相似文献   

9.
This work is devoted to investigating the synchronization between two novel different hyperchaotic systems with fully unknown parameters, i.e., an uncertain hyperchaotic Lorenz system and an uncertain hyperchaotic Lü system. Based on the Lyapunov stability theory, a new adaptive controller with parameter update law is designed to synchronize these two hyperchaotic systems asymptotically and globally. Numerical simulations are presented to verify the effectiveness of the synchronization scheme.  相似文献   

10.
This paper deals with the adaptive synchronization of two identical hyperchaotic master and slave systems. The master system and the slave system each consists of two subsystems: a hyperchaotic Chen subsystem and a unified chaotic subsystem. The asymptotic convergence of the errors between the states of the master system and the states of the slave system is proven using Lyapunov theory. Simulation results are presented to illustrate the ability of the control law to synchronize the master and slave systems. Moreover, the proposed control scheme is applied to encrypt and decrypt discrete signals such as digital images where computer simulation results are provided to show that the proposed control law works well.  相似文献   

11.
Based on the Lyapunov stability and adaptive synchronization theory, optimization design of adaptive controllers and parameter observers with controllable gain coefficient are investigated in detail. The linear errors of corresponding variables and parameters are used to construct different appropriate positive Lyapunov functions V and the parameter observers and adaptive controllers are approached analytically by simplifying the differential inequality dV/dt?0. Particularly, an optional gain coefficient is selected in the parameter observers and positive Lyapunov function, which decides the transient period to identify the unknown parameters and reach synchronization. The scheme is used to study the synchronization of two non-identical hyperchaotic Rössler systems. The theoretical and numerical results confirm that the four unknown parameters in the drive system are estimated exactly and the two hyperchaotic systems reach complete synchronization when the controllers and parameter observers work on the driven system. To confirm the model independence of this scheme, an alternative hyperchaotic system is investigated, whereby the results confirm that the five unknown parameters are identified rapidly and exactly, and that the two hyperchaotic systems reach complete synchronization as well.  相似文献   

12.
This paper is involved with the adaptive modified function projective synchronization (MFPS) problem of hyperchaotic systems with unknown parameters. Based on the Lyapunov stability theorem and adaptive control method, adaptive controllers and parameters update laws can be presented for the MFPS not only between two identical hyperchaotic systems but particularly also between two different hyperchaotic systems with fully unknown or partially unknown parameters. Moreover, the coupling strength can be automatically adapted to a updated law. Numerical simulations are presented to show the effectiveness of the proposed synchronization schemes.  相似文献   

13.
In this paper, a novel projective synchronization scheme called adaptive generalized function projective lag synchronization (AGFPLS) is proposed. In the AGFPLS method, the states of two different chaotic systems with fully uncertain parameters are asymptotically lag synchronized up to a desired scaling function matrix. By means of the Lyapunov stability theory, an adaptive controller with corresponding parameter update rule is designed for achieving AGFPLS between two diverse chaotic systems and estimating the unknown parameters. This technique is employed to realize AGFPLS between uncertain Lü chaotic system and uncertain Liu chaotic system, and between Chen hyperchaotic system and Lorenz hyperchaotic system with fully uncertain parameters, respectively. Furthermore, AGFPLS between two different uncertain chaotic systems can still be achieved effectively with the existence of noise perturbation. The corresponding numerical simulations are performed to demonstrate the validity and robustness of the presented synchronization method.  相似文献   

14.
In this paper, dynamics of the fractional-order simplied Lorenz hyperchaotic system is investigated. Modied Adams-Bashforth-Moulton method is applied for numerical simulation. Chaotic regions and periodic windows are identied. Dierent types of motions are shown along the routes to chaos by means of phase portraits, bifurcation diagrams, and the largest Lyapunov exponent. The lowest fractional order to generate chaos is 3.8584. Synchronization between two fractional-order simplied Lorenz hyperchaotic systems is achieved by using active control method. The synchronization performances are studied by changing the fractional order, eigenvalues and eigenvalue standard deviation of the error system.  相似文献   

15.
This work is involved with switched modified function projective synchronization of two identical Qi hyperchaotic systems using adaptive control method. Switched synchronization of chaotic systems in which a state variable of the drive system synchronize with a different state variable of the response system is a promising type of synchronization as it provides greater security in secure communication. Modified function projective synchronization with the unpredictability of scaling functions can enhance security. Recently formulated hyperchaotic Qi system in the hyperchaotic mode has an extremely broad frequency bandwidth of high magnitudes, verifying its unusual random nature and indicating its great potential for some relevant engineering applications such as secure communications. By Lyapunove stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems modified function projective synchronized. Synchronization under the effect of noise is also considered. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.  相似文献   

16.
In this Letter the issue of impulsive Synchronization of a hyperchaotic Lorenz system is developed. We propose an impulsive synchronization scheme of the hyperchaotic Lorenz system including chaotic systems. Some new and sufficient conditions on varying impulsive distances are established in order to guarantee the synchronizability of the systems using the synchronization method. In particular, some simple conditions are derived for synchronizing the systems by equal impulsive distances. The boundaries of the stable regions are also estimated. Simulation results show the proposed synchronization method to be effective.  相似文献   

17.
The control and hybrid projective synchronization (HPS) strategies for a novel hyperchaotic system are investigated. Firstly, the novel hyperchaotic system is controlled to the unsteady equilibrium point or limit cycle via only one scalar controller which includes two state variables. Secondly, based on Lyapunov’s direct method HPS between two novel hyperchaotic systems is studied. A new nonlinear feedback vector controller is designed to guarantee HPS, which can be simplified ulteriorly into a single scalar controller to achieve complete synchronization between two novel hyperchaotic systems. Finally, numerical simulations are given to verify the effectiveness of these strategies. The proposed methods have certain significances for reducing the cost and complexity for controller implementation.  相似文献   

18.
Robust adaptive modified function projective synchronization between two different hyperchaotic systems is investigated, where the external uncertainties are considered and the scale factors are different from each other. The synchronization criterion is presented, which can be realized by adaptive feedback controller with compensator to eliminate the influence of uncertainties effectively. The update laws of the unknown parameters are given and the sufficient conditions are deduced based on stability theory and adaptive control. And some mistakes in the previous works are pointed out and revised. Finally, the hyperchaotic Lü and new hyperchaotic Lorenz systems are taken for example and the numerical simulations are presented to verify the effectiveness and robustness of the proposed control scheme.  相似文献   

19.
In this paper, the generalized projective synchronization of a class of hyperchaotic systems is studied. On the basis of the state observer, it is not necessary to calculate the Lyapunov exponents, which makes this scheme simpler. Hyperchaotic Lü system and hyperchaotic Rössler systems are used as examples to validate the effectiveness of the proposed method.  相似文献   

20.
In this paper, the function cascade synchronization scheme is proposed to investigate the discrete-time hyperchaotic systems. By choosing some different error functions and with the aid of symbolic–numeric computation, the proposed scheme is applied to achieve the function cascade synchronization for two discrete-time hyperchaotic systems: the generalized Hénon map and the discrete-time Rössler system, respectively. Numerical simulations are used to verify the effectiveness and feasibility of the proposed technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号