首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a foam cone-in-shell target design aiming at optimum hot electron production for the fast ignition. A thin low-density foam is proposed to cover the inner tip of a gold cone inserted in a fuel shell. An intense laser is then focused on the foam to generate hot electrons for the fast ignition. Element experiments demonstrate increased laser energy coupling efficiency into hot electrons without increasing the electron temperature and beam divergence with foam coated targets in comparison with solid targets. This may enhance the laser energy deposition in the compressed fuel plasma.  相似文献   

2.
Ignition of single nickel-coated aluminum particles   总被引:2,自引:0,他引:2  
A thin coating of nickel on the surface of aluminum particles can prevent their agglomeration and at the same time facilitate their ignition, thus increasing the efficiency of aluminized propellants. In this work, ignition of single nickel-coated aluminum particles is investigated using an electrodynamic levitation setup (heating by laser) and a tube reactor (heating by high-temperature gas). The levitation experiments are used for measurements of the ignition delay time at different Ni contents in the particles. The high-temperature gas experiments are used to measure the critical ignition temperature. It is reported that the Ni coating dramatically decreases both the ignition delay time of laser-heated Al particles and the critical ignition temperature of gas-heated Al particles. A heat balance analysis of the levitated particles shows that the lower ignition temperature of Ni-coated Al particles is the most probable reason for the observed reduction in the ignition delay time. Exothermic intermetallic reactions between liquid Al and solid Ni are considered as the main reason for the lowered ignition temperature of Ni-coated Al particles.  相似文献   

3.
We report on Time-of-Flight Mass Spectrometry (TOFMS) analysis of plasmas produced in laser ablation of Al targets. We used both the second (532 nm) and third (355 nm) harmonic of a Nd: YAG laser system, carrying out the investigation in a regime of relatively high laser fluence (up to 70 J/cm2), where the production of ionized species in the plume is maximized. We present TOF mass spectra of ions in the laser-produced plasma, and a detailed analysis of the relative abundance of different charged species as a function of the laser fluence. The presence of single, doubly and triply ionized Al atoms has been observed and the fluence threshold for their production is reported. We also studied the total ion and electron yield at different laser fluences, its saturation above specific energy densities, and singly ionized cluster-ions produced in the laser plasma.  相似文献   

4.
We study the dynamics of ions produced upon ablation of Al and ceramic Al2O3 targets using nanosecond laser pulses at 193 nm (6.4 eV) as a function of the laser fluence from threshold up to 12 J cm−2. An electrical (Langmuir) probe located at 40 mm from the target surface has been used for determining the ion yield and calculating the kinetic energy distributions. The results for both targets show the existence of a significant amount of ions having kinetic energies >200 eV (≈20% around threshold fluence), and kinetic energies are up to >1.5 keV. The results are related with the existence of direct photonionization processes caused by the photon energy of the laser being higher than the ionization potential of Al (5.98 eV). Comparison of the ion yield when ablating the two types of targets for fluences above threshold to data reported in the literature suggests that the magnitude of the yield and its threshold are parameters depending on the thermal properties of the target rather than on the laser wavelength. Around threshold, the different behavior of ion yield when ablating Al and Al2O3 targets suggests that the threshold for neutral aluminium and ion species in the case of ablation of the Al2O3 target must be similar.  相似文献   

5.
An improved indirect scheme for laser positron generation is proposed. The positron yields in high-Z metal targets irradiated by laser produced electrons from near-critical density plasmas and underdense plasma are investigated numerically. It is found that the positron yield is mainly affected by the number of electrons of energies up to several hundreds of MeV. Using near-critical density targets for electron acceleration, the number of high energy electrons can be increased dramatically. Through start-to-end simulations, it is shown that up to 6.78 x 10~(10) positrons can be generated with state-of-the-art Joule-class femtosecond laser systems.  相似文献   

6.
Studies of phenomena accompanying the interaction of superstrong electromagnetic fields with matter, in particular, the generation of an electron–positron plasma, acceleration of electrons and ions, and the generation of hard electromagnetic radiation are briefly reviewed. The possibility of using thin films to initiate quantum electrodynamics cascades in the field of converging laser pulses is analyzed. A model is developed to describe the formation of a plasma cavity behind a laser pulse in the transversely inhomogeneous plasma and the generation of betatron radiation by electrons accelerated in this cavity. Features of the generation of gamma radiation, as well as the effect of quantum electrodynamics effects on the acceleration of ions, at the interaction of intense laser pulses with solid targets are studied.  相似文献   

7.
We propose a mechanism that leads to efficient acceleration of electrons in plasma by two counterpropagating laser pulses. It is triggered by stochastic motion of electrons when the laser fields exceed some threshold amplitudes, as found in single-electron dynamics. It is further confirmed in particle-in-cell simulations. In vacuum or tenuous plasma, electron acceleration in the case with two colliding laser pulses can be much more efficient than with one laser pulse only. In plasma at moderate densities, such as a few percent of the critical density, the amplitude of the Raman-backscattered wave is high enough to serve as the second counterpropagating pulse to trigger the electron stochastic motion. As a result, even with one intense laser pulse only, electrons can be heated up to a temperature much higher than the corresponding laser ponderomotive potential.  相似文献   

8.
Generation and propagation of fast electrons in laser targets consisting of thin nanofilaments are studied numerically and analytically. Such targets completely absorb laser radiation and exhibit a large coefficient of laser-energy conversion to kinetic energy of a flow of fast electrons. Analytical estimates show that the optimal thickness of the filament is on the order of the skin depth of the laser plasma, while an optimal distance between filaments is on the order of the Debye radius of hot electrons. A bunch of relativistic electrons can propagate as far as several hundred micrometers in such targets, while the fastest electrons can propagate several millimeters. Upon bending of filaments, the flow of electrons propagates along the filaments and can be focused by bringing the filaments together. Laser targets of the discussed composition are used as sources of dense bunches of relativistic electrons and subsequent generation of high-intensity X-ray radiation with their help.  相似文献   

9.
Due to the growing demand for high-current and long-duration electron-beam devices, laser electron sources were investigated in our laboratory. Experiments on electron-beam generation and propagation from aluminium and copper targets illuminated by XeCl (308 nm) and KrCl (222 nm) excimer lasers, were carried out under plasma ignition due to laser irradiation. This plasma supplied a spontaneous accelerating electric field of about 370 kV/m without an external accelerating voltage. By applying the modified one-dimensional Poisson equation, we computed the expected current and we also estimated the plasma concentration during the accelerating process. At 40 kV of accelerating voltage, an output current pulse of about 80 A/cm2 was detected from an Al target irradiated by the shorter wavelength laser.On leave from Institute of General Physics, Moscow, Russia  相似文献   

10.
The effects of the interaction of an intense femtosecond laser pulse with large atomic clusters are considered. The pulse intensity is of the order of 1018 W cm?2. New effects appear when the magnetic component of the Lorentz force is taken into account. The second harmonic of laser radiation is generated. The second harmonic generation (SHG) efficiency is proportional to the square of the number of atoms in a cluster and the square of the laser radiation intensity. The resonance increase in the SHG efficiency at the Mie frequencies (both at the second harmonic frequency and fundamental frequency) proved to be insignificant because of the fast passage through the resonance during cluster expansion. The mechanisms of the expansion and accumulation of energy by electrons and ions in the cluster are discussed in detail. The energy accumulation by electrons mainly occurs due to stimulated inverse bremsstrahlung upon elastic reflection of the electrons from the cluster surface. The equations describing the cluster expansion take into account both the hydrodynamic pressure of heated electrons and the Coulomb explosion of the ionized cluster caused by outer shell ionization. It is assumed that both inner shell and outer shell ionization is described by the over barrier mechanism. It is shown that atomic clusters are more attractive for the generation of even harmonics than compared to solid and gas targets.  相似文献   

11.
冲击点火是一种新型点火方式,介绍了国内进行的冲击点火分解实验。实验结果表明:相比于方波脉冲,在冲击峰整形脉冲作用下激光与等离子体相互作用明显增强,背向散射光的份额增加,散射光谱来自于不同密度的等离子体区域。实验中也观察到了方波条件下冲击波在CH样品中的传播过程,与模拟计算结果较为符合。  相似文献   

12.
The thermonuclear gain G for bulk and spark ignitions are calculated using a mathematical simulation of thermonuclear combustion in a DT plasma of laser targets for various parameters of the target plasma and (isobaric and isochoric) ignitors. The critical parameters of ignitors at which an effective nuclear burst occurs with G ~ 100 are calculated. It is shown that a further increase in the temperature and size of the ignitors virtually does not affect the efficiency of DT fuel burnup. Irrespective of the ignition technique, the value of G can be estimated with the help of a simple asymptotic formula. At the same time, the critical parameters of ignitors are determined to a considerable extent by the mode of ignition and by the target parameters. Spark ignition with an isochoric ignitor corresponding to the fast ignition mode is considered in detail. It is shown that the main critical parameter for optimal isochoric ignitors is their thermal energy liberated upon absorption of an auxiliary ultrashort laser pulse. The critical values of this energy are calculated.  相似文献   

13.
Proton beams laser accelerated from thin foils are studied for various plasma gradients on the foil rear surface. The beam maximum energy and spectral slope reduce with the gradient scale length, in good agreement with numerical simulations. The results also show that the jxB mechanism determines the temperature of the electrons driving the ion expansion. Future ion-driven fast ignition of fusion targets will use multikilojoule petawatt laser pulses, the leading part of which will induce target preheat. Estimates based on the data show that this modifies by less than 10% the ion beam parameters.  相似文献   

14.
Ph. Korneev 《Laser Physics》2012,22(1):184-194
The problem of harmonics generation in nanotargets is considered at the range of parameters (a nanotarget diameter and a pump laser intensity) when the oscillation amplitude of an electron in a target is much larger than the target width. Electron motion in charged nanotargets in the presence of a laser field of different (non-relativistic) strength is considered. It is demonstarted that for lasers of infrared frequencies clusters do not possess strong enough potential to bound electrons with large oscillation amplitudes. Opposite to clusters, nanofilms were found to be very perspective targets in the problem considered. A simple analytic model and molecular dynamic simulations showed increased harmonics generation when the oscillation amplitude of electrons in a film becomes much larger, than the film width. Different regimes of generation are briefly discussed.  相似文献   

15.
王宬朕  董全力  刘苹  吴奕莹  盛政明  张杰 《物理学报》2017,66(11):115203-115203
直接驱动惯性约束聚变(ICF)的实现需要对靶丸进行严格的对称压缩,以达到自持热核反应(点火)所需的条件.快点火方案的应用降低了对靶丸压缩对称性以及驱动能量的要求,但压缩及核反应过程中良好的靶丸对称性无疑有助于核反应增益的提高.本文研究了快点火方案中高能电子注入高密等离子体后导致的各向异性电子的压强张量.这一现象存在于ICF快点火方案中的高能电子束"点火"及核反应阶段.鉴于高能电子加热离子过程以及靶丸核反应自持燃烧过程的时间较长,高密靶核会由于超高的各向异性压强的作用破坏高密靶丸的对称性,降低核燃料密度,进而降低了核燃料燃烧效率以及核反应增益.  相似文献   

16.
We report on some recent experimental results on proton production from ultra-intense laser pulse interaction with thin aluminium and plastic foil targets. These results were obtained at Laboratoire d'Optique Appliquée with the 100 TW ‘salle jaune’ laser system, delivering 35 fs laser pulses at 0.8 μm, reaching a maximum intensity on target of a few 1019 W/cm2.

In such extreme interaction conditions, an intense and collimated relativistic electron current is injected from the plasma created on the laser focal spot into the cold interior of the target. Its transport through dense matter, ruled by both collisions and self-induced (electro-magnetic) field effects, is the driving mechanism for proton acceleration from the rear side of thin foils: when reaching and leaving the foil rear-side, the fast electrons create a large charge separation and a huge electrostatic field with a maximum value of few TV/m, capable of accelerating protons.

A parametric study as a function of the laser driver and target parameters indicates an optimal value for target thickness, which strongly depends on the laser prepulse duration. In our experiments, we did irradiate targets of various materials (CH, Al, Au) changing the prepulse duration by using fast Pockels cells in the laser chain. CR-39 nuclear track detectors with Al filters of different thickness and a Thomson parabola were used to detect proton generation. The best results were obtained for 2 μm Al targets, leading to the generation of proton energies with energies up to 12 MeV.  相似文献   

17.
利用二维粒子模拟方法,本文研究了超强激光与泡沫微结构镀层靶相互作用产生强流电子束问题.研究发现泡沫区域产生了百兆高斯级准静态磁场,形成具有选能作用的"磁势垒",强流电子束中的低能端电子在"磁势垒"的作用下返回激光作用区域,在鞘场和激光场的共同作用下发生多次加速过程,从而显著提升高能电子产额.还应用单粒子模型,分析了电子在激光场作用下的运动行为,验证了多次加速的物理机理.  相似文献   

18.
为研究激光脉冲与真空中被照射的铝靶的耦合作用,进行了理论分析和数值计算,所给的结果是依据包括热传导、气化和等离子体燃烧在内的数学模型得到的。指出了对汽化过程的正确描述和重要性。同时发现双光子电离可导致初始电子数密度和其温度的增加。这一效应,从长远来看会导致激发态原子密度和电子产生速率的增加,但这是以降低光电离的产生为代价的。计算所得冲量耦合和等离子体阈值数据与实验结果吻合的较好。  相似文献   

19.
It has been proposed to use the formation of a magnetized plasma of laser-accelerated ions and electrons at the irradiation of the curved surface of the inner cavity of the target by a petawatt laser pulse to initiate a neutronless nuclear reaction of protons with boron nuclei. The possibility of an additional increase in the intensity of the reaction owing to the compression of the plasma at the irradiation of the outer surface of the target by a second terawatt laser pulse synchronized in time with the plasma-forming pulse has been discussed. The parameters of laser pulses and a target have been determined at which the ignition of a pB plasma occurs; i.e., the energy released in reactions is equal to the energy of the plasma.  相似文献   

20.
In this paper, the nonlinear interaction of ultra-high power laser beam with fusion plasma at relativistic regime in the presence of obliquely external magnetic field has been studied. Imposing an external magnetic field on plasma can modify the density profile of the plasma so that the thermal conductivity of electrons reduces which is considered to be the decrease of the threshold energy for ignition. To achieve the fusion of Hydrogen-Boron (HB) fuel, the block acceleration model of plasma is employed. Energy production by HB isotopes can be of interest, since its reaction does not generate radioactive tritium. By using the inhibit factor in the block model acceleration of plasma and Maxwell's as well as the momentum transfer equations, the electron density distribution and dielectric permittivity of the plasma medium are obtained. Numerical results indicate that with increasing the intensity of the external magnetic field, the oscillation of the laser magnetic field decreases, while the dielectric permittivity increases. Moreover, the amplitude of the electron density becomes highly peaked and the plasma electrons are strongly bunched with increasing the intensity of external magnetic field. Therefore, the magnetized plasma can act as a positive focusing lens to enhance the fusion process. Besides, we find that with increasing θ-angle (from oblique external magnetic field) between 0 and 90°, the dielectric permittivity increases, while for θ between 90° and 180°, the dielectric permittivity decreases with increasing θ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号