首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The morphology of PbTe and SnTe nanostructures grown on BaF2(111) substrates from the vapor phase in a vacuum under conditions close to the thermodynamic equilibrium has been investigated using atomic force microscopy. The equilibrium shape of PbTe and SnTe quantum dots and the statistical parameters of arrays of these quantum dots have been studied as a function of the thermodynamic conditions of growth, the crystal lattice mismatch between the materials of the quantum dots and substrate, and elastic properties of these materials. It has been established that, when the BaF2(111) substrate is deformed under external mechanical loading, the self-organization of dislocations on the BaF2(111) surface can result in the formation of a nanoscale ordered strain relief, which can be used for the fabrication of nanostructures. The morphology of this relief depends on the external load and on the temperature at which the substrate is deformed. It has been shown that the deformation effect on the surface of the substrate and light irradiation of the growth zone of nanostructures affect the nucleation of islands and kinetic processes occurring on the surface of the substrate during their growth. Using the influence of external factors on the BaF2(111) surface under certain thermodynamic conditions, it is possible to grow SnTe and PbTe nanostructures with different morphologies: continuous epitaxial layers with a thickness of less than 10 nm, homogeneous arrays of quantum dots with a high lateral density (more than 1011 cm2), quasi-periodic lateral nanostructures (nanowires), “single” and “coupled” quantum dots, and “molecules” of quantum dots.

  相似文献   

2.
We propose a two-step process, which is based on substrate nano-patterning by means of growth instabilities in a first step and self-assembling of Ge dots on the top of surface instabilities in a second step. We used the instabilities that develop during the growth of Si(Ge) layers on both nominal and vicinal Si (1 1 1) or (0 0 1) surfaces. Depending on the growth conditions (Ge concentration, growth temperature, thickness), various growth instability regimes were observed: pure kinetic regime, kinetically activated strain-induced regime and pure strain-driven regime. In the case of Si/Si growth, kinetic instabilities developed at different growth temperatures depending on the surface orientation. The critical exponents describing evolution with time have been determined: amplitude Atβ and wavelength Ltα. Experimental results show that each instability regime appears for a given growth temperature range that critically depends on the concentration of Ge. Evolution with time also depends on the Ge concentration. But in all cases, we evidence discrepancies between the experimental critical exponents and those predicted by classical modelling. We also give some examples of Ge dots self-organization on substrates nano-patterned (periodically undulated) by means of the different growth instabilities described above. In all cases, we observe Ge dots ordering along the substrate undulations due to step and/or strain effects. On kinetic instabilities (Si/Si(0 0 1) vicinal), Ge islands preferentially nucleate on step bunches. On SiGe(0 0 1) template layers, Ge dots nucleate on top of the SiGe undulations. In that case, strain gradients improved island ordering. The best ordering was achieved using SiGe(0 0 1) 10° off misoriented template layers as a result of almost perfect anisotropic morphology.  相似文献   

3.
宋禹忻  俞重远  刘玉敏 《物理学报》2008,57(4):2399-2403
采用动力学蒙特卡罗模型模拟了沉积速率和生长停顿对GaAs衬底中垂直耦合InAs 量子点超晶格生长早期阶段的影响.通过对生长表面形态、岛平均尺寸、岛尺寸分布及其标准差等方面的研究,发现综合控制沉积速率和生长停顿时间能够得到大小均匀、排列有序的岛阵列.这对后续量子点超晶格生长过程中量子点的定位有重要影响. 关键词: 动力学蒙特卡罗模拟 量子点超晶格 外延生长  相似文献   

4.
Tunable metastability of surface nanostructure arrays   总被引:1,自引:0,他引:1  
A Fokker-Planck equation is used to model the coarsening of surface nanostructure arrays. Metastable states are identified which are associated with a narrow size distribution and a coverage dependent mean island size. This is a general feature linked to nanostructures which, as a function of island size, are associated with a minimum in formation energy per atom and a positive chemical potential gradient. This has important implications for the self-organization of quantum dots.  相似文献   

5.
Selective epitaxy growth (SEG) was used to build SiGe optoelectronic devices and nanoscale structures for the future nanotechnology. The growth of strained SiGe on small areas offers some advantages for improvement of device performances. In particular, with relative large area light emitting diodes (LED), the emission efficiency of SiGe diodes can be increased up to 0.1% internal value at room temperature. Further improvements are expected for nanoscale devices. By SEG on mesas, Ge islands can be obtained ordered in lines along the mesas edges. Precise localization of Ge dots can be obtained by SEG in very small oxide windows and even only one island/window is formed. It was shown that nanostructures of size down to 5 nm can be grown by this method. PACS 81.15Kk; 81.07.-b; 78.60.Fi  相似文献   

6.
Anisotropic surface diffusion and strain are used to explain the formation of three-dimensional (In,Ga)As quantum dot lattices. The diffusion characteristics of the surface, coupled with the elastic anisotropy of the matrix, provides an excellent opportunity to influence the dot positions. In particular, quantum dots that are laterally organized into long chains or chessboard two-dimensional arrays vertically organized with strict vertical ordering or vertical ordering that is inclined to the sample surface normal are accurately predicted and observed.  相似文献   

7.
The effect of vertical ordering in superlattices of self-assembled Ge/Si(0 0 1) quantum dots was investigated by a combination of structural and optical characterizations via in situ reflection high-energy electron diffraction, transmission electron microscopy, atomic force microscopy and photoluminescence spectroscopy. We show that the vertical ordering observed in quantum-dot superlattices is characterized not only by the alignment of islands along the growth direction but also by a reduction of the critical thickness. The better the vertical ordering is, the more pronounced the reduction of the critical thickness will be. Such an evolution of the critical thickness could be explained by elastic strain fields induced by buried islands and propagated through the spacer layers. An important result issued from this work is the realization of superlattices in which dots can have equal size in all layers. On the other hand, experiments performed on the transformation of the island shape versus the spacer layer thickness suggest that preferential nucleation induced by surface roughness may be the main mechanism responsible for the vertical ordering observed in quantum-dot superlattices.  相似文献   

8.
We investigate and elucidate the surprising observation of atomically ordered domains in dome-shaped SiGe nanoislands. We show, through atomistic Monte Carlo simulations, that this ordering is a surface-related phenomenon, and that is driven by surface equilibrium rather than by surface kinetics. The ordering depends on facet orientation. The main source of ordering is the {15 3 23} facet, while the {105} and {113} facets contribute less. Subsurface ordered configurations self-organize under this facet and are frozen-in and buried during island growth, giving rise to the ordered domains. Ordering mechanisms based on constrained surface kinetics, requiring step-mediated segregation at the island facets, are shown to be much less likely.  相似文献   

9.
We report on a new approach for positioning of self-assembled InAs quantum dots on (1 1 0) GaAs with nanometer precision. By combining self-assembly of quantum dots with molecular beam epitaxy on in situ cleaved surfaces (cleaved-edge overgrowth) we have successfully fabricated arrays of long-range ordered InAs quantum dots. Both atomic force microscopy and micro-photoluminescence measurements demonstrate the ability to control position and ordering of the quantum dots with epitaxial precision as well as size and size homogeneity. Furthermore, photoluminescence investigations on dot ensembles and on single dots confirm the high homogeneity and the excellent optical quality of the quantum dots fabricated.  相似文献   

10.
郭建东 《物理》2008,37(2):86-92
无论是对低维基本物理以及其中新奇量子现象的探索与认识,还是微电子工业水平的持续发展,都迫切地需要掌握一种能够精确、可靠地操控表面纳米结构的方法.自组织生长,即粒子聚集时由于介观尺度力场或受限运动作用而导致的自发有序现象,在原子尺度上可以实现对纳米结构的精确控制,而在介观尺度上又可以调节这些微观结构单元的组织构型.文章结合作者近年来在表面纳米结构生长与物理性质研究方面所做过的工作,从自组织生长的原理出发,介绍了对金属纳米线、有序分子薄膜以及合金量子点阵列生长进行人工操控的方法.  相似文献   

11.
One-dimensional ordered quantum-ring chains are fabricated on a quantum-dot superlattice template by molecular beam epitaxy. The quantum-dot superlattice template is prepared by stacking multiple quantum-dot layers and quantum-ring chains are formed by partially capping quantum dots. Partially capping InAs quantum dots with a thin layer of GaAs introduces a morphological change from quantum dots to quantum rings. The lateral ordering is introduced by engineering the strain field of a multi-layer InGaAs quantum-dot superlattice.  相似文献   

12.
SiGe quantum dots (QDs) grown by ultra-high vacuum chemical vapor deposition using H2 and He carrier gases are investigated and compared. SiGe QDs using He carrier gas have smaller dot size with a better uniformity in terms of dot height and dot base as compared to the H2 carrier gas. There is a higher Ge composition and less compressive strain in the SiGe QDs grown in He than in H2 as measured by Raman spectroscopy. The Ge content is higher for He growth than H2 growth due to hydrogen induced Si segregation and the lower interdiffusivity caused by the more strain relaxation in the He-grown SiGe dots. The photoluminescence also confirms more compressive strain for H2 growth than He growth. Hydrogen passivation and Ge-H cluster formation play an important role in the QDs growth.  相似文献   

13.
We review theoretical concepts and experimental results on the physics of misfit dislocations in nanocomposite solids with quantum dots (QDs) and nanowires (quantum wires). Special attention is paid to thermodynamic theoretical models of formation of misfit dislocations in QDs and nanowires, including composite core–shell nanowires. The effects of misfit dislocations on the film growth mode during heteroepitaxy and phase transitions in QD systems are analysed. Experimental results and theoretical models of the ordered spatial arrangement of QDs growing on composite substrates with misfit dislocation networks are discussed. The influence of subsurface dislocations in composite substrates on the nucleation of QDs and nanowires on the substrate surface is considered. Models of misfit strain relaxation and dislocation formation in nanofilms on compliant substrates are also reviewed.  相似文献   

14.
In this paper, we review our latest developments on the growth and properties of self-assembling quantum dot structures. The self-assembling growth technique which was initially developed using molecular beam epitaxy (MBE), has now been extended to metalorganic chemical vapor deposition (MOCVD). The paper first presents structural results based on atomic force and transmission electron microscopy studies of the quantum dot arrays which were obtained by MBE and MOCVD growth. From the detailed structural analysis we have observed that the formation of coherently strained dots of InAs, InAlAs, and InP dots on various cladding layer surfaces. MBE growth of InAs self-assembled dots has achieved the smallest size distribution, with dots as small as 12nm in diameter. For the MOCVD growth of InP dots we have found that the surface morphology and growth temperature of lower cladding layer growth has a profound influence on island size and density. Recent results on the optical and transport properties of the MBE grown self-assembling dot (SAD) arrays are also presented.  相似文献   

15.
We study the effect of strain on the vertical and lateral self-organization of nanoscale patterns and stacked quantum dots during epitaxial growth. The computational approach is based on the level set method in combination with an atomistic strain code. Strain changes the energetics of microscopic parameters during growth, and thus determines the nucleation sites and the growth of islands and dots. Our results show that strain can lead to vertical alignment as well as lateral organization. Moreover, our simulations suggest that there is an optimal thickness of the capping layer to get the best alignment and most uniform size distribution of stacked quantum dots, and that its variation can be used to control the formation of interesting structures.  相似文献   

16.
We present different relaxation mechanisms of Ge and SiGe quantum dots under excimer laser annealing. Investigation of the coarsening and relaxation of the dots shows that the strain in Ge dots on Ge films is relaxed by dislocation since there is no interface between the Ge dots and the Ge layer, while the SiGe dots on Si0.77Ge0.23 film relax by lattice distortion to coherent dots, which results from the obvious interface between the SiGe dots and the Si0.77Ge0.23 film. The results are suggested and sustained by Vanderbilt and Wickham's theory, and also demonstrate that no bulk diffusion occurs during the excimer laser annealing.  相似文献   

17.
This article presents a study on the growth and optical properties of self-assembled InAsSb/InP nanostructures on (001) InP substrate, which are potential candidate materials for making mid-infrared lasers. The surfactant effect of Sb atoms is found to play a crucial role in the formation of flat InAsSb quantum dashes with almost identical island width no matter the change of InAsSb deposition thickness. The critical thickness for the transition from two-dimensional plane growth to three-dimensional island growth is observed to be less than two monolayer. And the photoluminescence measurements on InAsSb quantum dashes with different nominal Sb composition well demonstrate the band-gap bowing effect induced by the incorporation of Sb atoms into InAs quantum dots. The photoluminescence linewidth of InAsSb quantum dashes also present unusual temperature behavior, which can be attributed to the narrow size distribution of InAsSb quantum dashes.  相似文献   

18.
We present a novel mechanism of nanostructure growth based on quantum confinement of surface-state electrons. Ab initio calculations and the kinetic Monte Carlo simulations reveal the phenomenon of confinement-induced adatom self-organization in quantum corrals. Our studies indicate that new atomic-scale nanostructures can be engineered exploiting the quantum confinement of surface electrons.  相似文献   

19.
The compositional distribution of InAs quantum dots grown by molecular beam epitaxy on GaAs capped InAs quantum dots has been studied in this work. Upper quantum dots are nucleated preferentially on top of the quantum dots underneath, which have been nucleated by droplet epitaxy. The growth process of these nanostructures, which are usually called as quantum dots molecules, has been explained. In order to understand this growth process, the analysis of the strain has been carried out from a 3D model of the nanostructure built from transmission electron microscopy images sensitive to the composition.  相似文献   

20.
This paper reports on the use of a local order measure to quantify the spatial ordering of a quantum dot array (QDA). By means of electron ground state energy analysis in a quantum dot pair, it is demonstrated that the length scale required for such a measure to characterize the opto-electronic properties of a QDA is of the order of a few QD radii. Therefore, as local order is the primary factor that affects the opto-electronic properties of an array of quantum dots of homogeneous size, this order was quantified through using the standard deviation of the nearest neighbor distances of the quantum dot ensemble. The local order measure is successfully applied to quantify spatial order in a range of experimentally synthesized and numerically generated arrays of nanoparticles. This measure is not limited to QDAs and has wide ranging applications in characterizing order in dense arrays of nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号