首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The ground state electronic structure and thermal properties of B2-type intermetallic compounds AlRE (RE: Pm, Sm, Eu, Tb, Gd and Dy) have been studied using a self-consistent tight-binding linear muffin-tin orbital (TB-LMTO) method at ambient as well as at high pressure. These compounds show metallic behavior under ambient condition. The band structure, total energy, density of states and ground state properties like lattice parameter, bulk modulus are calculated in the present work. The Debye-Grüneisen model is used to calculate the Debye temperature and the Grüneisen constant. The calculated results are in good agreement with the reported experimental and other theoretical results. The variation in the Debye temperature with pressure has also been reported. We present a detailed analysis of the role of f electrons of RE in the AlRE system.  相似文献   

2.
We investigate the structural, thermodynamic and electronic properties of Os by plane-wave pseudopotential density functional theory method. The obtained lattice constants, bulk modulus and cell volumes per formula unit are well consistent with the available experimental data. Especially, from our calculated bulk modulus, we conclude that Os is more compressible than diamond. Moreover, the temperature induced phase transition of Os from HCP structure to FCC structure has been obtained. It is found that the transition temperature of Os at zero pressure is 2702 K. However no transition pressure is found in our calculations. The effect of bulk modulus B as well as other thermodynamic properties of Os (including the thermal expansion α and the Grüneisen constant γ) on temperatures have also been studied. Our calculated thermal expansion α=1.510×10−5 K−1 and the Grüneisen constant γ=2.227 for HCP structure at room temperature agree very well with the experimental data. The density of states for HCP structure at 0 K and FCC structure at transition temperature 2702 K are also investigated in our work.  相似文献   

3.
A computational study of the pressure and thermal behaviour of NiMnSb within the framework of density functional theory and the Debye-Grüneisen model is reported. The theoretical values of equilibrium lattice parameter, bulk modulus, its pressure derivative, Debye temperature, Grüneisen constant and coefficient of thermal expansion are estimated from electronic structure calculated by the full-potential nonorthogonal local-orbital minimum basis method (FPLO). The bulk modulus and its pressure derivative have been computed using the Murnaghan form of the equation of states. The volume-temperature dependence was obtained by minimisation of the free energy as a sum of the total energy of the rigid lattice and the free energy of the vibration lattice. The thermal expansion coefficient for the studied NiMnSb, obtained within the Debye theory including anharmonicity, is in good agreement with experimental results.  相似文献   

4.
A model pseudopotential depending on an effective core radius but otherwise parameter free is used to study the binding energy, equation of state, ion-ion interaction, phonon dispersion curves (q-space and r-space analysis), phonon density of states, Debye temperature, mode Grüneisen parameters, dynamical elastic constants, Debye-Waller factor, mean-square displacement, Debye-Waller temperature parameter and propagation velocities of elastic waves of some fcc f-shell metals La, Yb, Ce, and Th. The contribution of the s-like electrons is calculated in the second-order perturbation theory for the model potential while d- and f-like electron is taken into account by introduction of repulsive short-range Born-Mayer term. Very recently proposed screening function due to Sarkar et al. has been used to obtain the screened form factor. The parameter of the potential is evaluated by zero pressure condition. Which is independent of any fitting procedure. An excellent agreement between theoretical investigations and experimental findings prove the ability of the potential for d- and f-shell metals exclusively.  相似文献   

5.
The structural, elastic and thermodynamic properties of thorium tetraboride (ThB4) have been investigated by using first-principles plane-wave pseudopotential density functional theory with generalized gradient approximation. The behaviors of structural parameters under 0-70 GPa hydrostatic pressure are studied by means of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) geometry optimization scheme. By using the stress-strain method, single crystal elastic constants are calculated to test the mechanical stability of the crystal structure and to determine mechanical properties such as bulk modulus at each pressure. However, in order to study the thermodynamic properties of ThB4, the quasi-harmonic Debye model is used. Then, the dependencies of bulk modulus, heat capacities, thermal expansions, Grüneisen parameters and Debye temperatures on the temperature and pressure are obtained in the whole pressure range 0-70 GPa and temperature range 0-1500 K.  相似文献   

6.
The electrical resistivity of the Kondo alloy Au (20ppm Cr) and of pure gold has been determined in the temperature range 1.3 – 20 K at pressures up to 80 kbar. For pure gold the pressure dependence of the temperature dependent part of the lattice resistivity can be explained fairly well by the Bloch-Grüneisen theory. Expressions for the volume dependence of the ideal lattice resistivity and of the Debye-temperature for gold are derived. — The Kondo temperatureT K of Au(Cr) is found to increase with pressure to more than twice the value atp=0 kbar.Therefrom the volume dependence of the effective exchange constantJ is calculated. The results are similar as in other Kondo alloys described previously.  相似文献   

7.
A number of thermoelastic and thermodynamic properties such as compressibilities, specific heat ratio, specific heat capacities, Grüneisen parameters, Debye temperature, the melting temperature, and their dependence on temperature and pressure have been obtained for the harzburgite rock of Oman ophiolite suite. Debye temperature ΘD and the ratio of the specific heats are the basic inputs which are determined here by making use of the seismic velocities and the density data. The specific heat capacities CP and CV are evaluated from the thermodynamic equations as well as from the Debye theory. These data along with the computed values of compressibilities have been used to evaluate the Grüneisen parameter and its dependence on temperature through thermodynamic and acoustic relations. The computed values of the Debye temperature has also been found very helpful to estimate the melting temperature of the rock whose pressure dependence is analyzed following the Clausius-Clapeyron equation.  相似文献   

8.
First-principles calculations of the crystal structure and the elastic properties of RuB2 have been carried out with the plane-wave pseudopotential density functional theory method. The calculated values are in very good agreement with experimental data as well as with some of the existing model calculations. The elastic constants cij, the aggregate elastic moduli (B, G, E), Poisson's ratio, and the elastic anisotropy with pressure have been investigated. Through the quasi-harmonic Debye model considering the phonon effects, the isothermal bulk modulus, the thermal expansions, Grüneisen parameters, and Debye temperatures depending on the temperature and pressure are obtained in the whole pressure range from 0 to 60 GPa and temperature range from 0 to 1100 K as well as compared to available data.  相似文献   

9.
The Grüneisen parameters are calculated for several alkali metals. The dependences of the Grüneisen, Slater, and Dugdale-MacDonald versions of this parameter on the relative compression (or extension) of the lattice and on the temperature are derived. A comparison shows that the theoretical isotherms for the sodium equation of state agree satisfactorily with experiment.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii Fizika, No. 11, pp. 49–52, November, 1969.  相似文献   

10.
Simple pseudopotential model for the binding energy of transition metals is proposed. The contribution of thes-like electrons is calculated in the second-order perturbation theory for the local model pseudopotential while that of thed-like electrons is taken into account by introduction of repulsive short-range interatomic potential. Model parameters were determined for ten fcc transitions metals (Cu, Ni, Fe, Co, Ag, Pd, Rh, Au, Pt, and Ir). This model was used for the calculation of the phonon dispersion and the density of states, as well as for the elastic constants and their pressure derivatives. Good agreement with experimental data was achieved for the overall shape of phonon spectra and even for the position of the Kohn anomalies in Pd and Pt. Existence of such anomalies is also stated for predicted phonon spectra of rhodium and iridium.  相似文献   

11.
Using the assumption δT=δT0(V/V0)k and the Grüneisen parameter γ macroscopic definition expression, we obtained a relationship for the volume dependence of the Grüneisen parameter γ. We have calculated the Grüneisen parameter γ with this relationship for NaCl and ε-Fe at high pressure under study. The calculated values of γ are found to show fairly in good agreement with available experimental data.  相似文献   

12.
Some basic relationships for materials under extreme compression are analyzed with the help of the calculus of indeterminates. The analysis presented here provides an understanding of the origin of identities and constraints at infinite pressure which are satisfied by all physically acceptable equations of state. These identities involve the bulk modulus and its pressure derivatives, the Grüneisen parameter and its volume derivatives, the thermal expansivity, and the Anderson-Grüneisen parameter. The identity for the third-order Grüneisen parameter in terms of the pressure derivatives of the bulk modulus at extreme compression is valid even if the free-volume parameter changes with pressure.  相似文献   

13.
On the basis of the free volume theory of Grüneisen parameter (γ) and using the calculus of indeterminates, it is found that the second order Grüneisen parameter (q) and the second pressure derivative of bulk modulus (KK″) change in a similar manner in the limit of extreme compression. The ratio of q and KK″ becomes finite at infinite pressure. This finding has been used further to obtain a relationship for the third order Grüneisen parameter λ in terms of pressure derivatives of bulk modulus up to the third order. The results are found to be consistent with the identities obtained recently by Shanker et al. [14] using the free volume theory.  相似文献   

14.
王斌  刘颖  叶金文 《物理学报》2012,61(18):186501-186501
利用基于密度泛函理论的第一性原理平面波赝势方法 并结合准谐徳拜模型研究了NaCl结构的TiC在高压下的弹性性质、电子结构和热力学性质. 计算所得零温零压下的晶格常数、体弹模量及弹性常数与实验值符合得很好. 零温下弹性常数和弹性模量随压强增大而增大. 通过态密度和电荷密度的分析, Ti-C键随压强增大而增强. 运用准谐德拜模型, 成功计算了TiC在高温高压下的体弹模量、熵、热膨胀系数、徳拜温度、 Grüneisen参数和比热容. 结果表明压强对体弹模量、热膨胀系数和徳拜温度的影响大于温度对其的影响. 热容随着压强升高而减小, 在高温高压下, 热容接近Dulong-Petit极限.  相似文献   

15.
本文探索了一种直接测量W-J参数的方法. 实验选用NaCl作为试样, 在快速压缩过程中原位测量样品的温度和压力的变化值. 通过温度修正使测量值在原理上更符合等熵压缩过程的结果, 并采用大幅度增压结合中值定理得出中点压力处温度随压力的变化率, 进而根据R=(P/T) (∂T/∂P)S关系式求出W-J参数, 整个过程没有引入其他参数. 此外, 作为对比, 我们还从相关的物态方程、经验公式和已知参数出发计算了NaCl的W-J参数及其随压力变化的关系. 结果表明: 实验测得的NaCl的W-J参数随压力增加而增加; 实验结果与计算值符合得很好. 这说明快速增压直接测量物质的W-J参数是一种可行且可靠的方法. 关键词: NaCl W-J参数 快速增压 高压  相似文献   

16.
In the present paper an analytical potential form is used for overlap repulsive energy, derived by Harrison from quantum mechanical considerations, along with the composite effect of three-body forces and intersublattice displacement. The short-range overlap parameters in Harrison's potential form have direct correlation with the valence state energies for outermost electrons. The potential model is applied to calculate the third and fourth order elastic constants, first and second pressure derivatives of second order elastic constants, Grüneisen parameter and its volume dependence, Anderson parameter, and thermal expansion coefficient for three non-centrosymmetric crystals, viz. CaF2, SrF2 and BaF2. The calculated values of various physical quantities are found to be in good agreement with experimental data.The authors are grateful to Dr. Mansour Khalef, the Head of Physics Department, TNRC, Tajura (Tripoli) for the facilities and encouragements.  相似文献   

17.
Structural, electronic, elastic and thermal properties of Mg2Si   总被引:1,自引:0,他引:1  
First-principles calculations of the lattice parameter, electron density maps, density of states and elastic constants of Mg2Si are reported. The lattice parameter is found to differ by less than 0.8% from the experimental data. Calculations of density of states and electron density maps are also performed to describe the orbital mixing and the nature of chemical bonding. Our results indicate that the bonding interactions in the Mg2Si crystal are more covalent than ionic. The quasi-harmonic Debye model, by means of total energy versus volume calculations obtained with the plane-wave pseudopotential method, is applied to study the elastic, thermal and vibrational effects. The variations of bulk modulus, Grüneisen parameter, Debye temperature, heat capacity Cv, Cp and entropy with pressure P up to 7 GPa in the temperature interval 0-1300 K have been systemically investigated. Significant differences in properties are observed at high pressure and high temperature. When T<1300 K, the calculated entropy and heat capacity agree reasonably with available experimental data. Therefore, the present results indicate that the combination of first-principles and quasi-harmonic Debye model is an efficient approach to simulate the behavior of Mg2Si.  相似文献   

18.
A study was made of the pressure dependence of the intensity of the Mössbauer line, and the dependence of this quantity on the specific volume of the crystal, which has the same form for all these crystals in the first approximation, was derived for regular atomic crystals in the Grüneisen approximation. The change in intensity of the Mössbauer line due to pressure can be converted, except for a multiplication factor, to a change in intensity of this line caused by a change in temperature.  相似文献   

19.
The pseudopotential method is used to determine the Grüneisen constant and the temperature dependence of the elastic constants for T > in alkali metals. An analysis is made of the influence of exchange-correlational effects in the electronic gas on the quantities mentioned above. The calculated values are in good agreement with experimental data in Na, K, Rb, and Cs. The results of the paper indicate that the considered anharmonic characteristics of alkali metals are determined primarily by the interaction in the first two coordination spheres.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 36–39, April, 1979.  相似文献   

20.
Ab initio calculation on B2-cadmium rare earth (RE), CdRE (RE=La, Ce and Pr) intermetallics has been performed at T=0 K with respect to their structural, electronic and thermal properties. The structural and electronic properties are derived using self-consistent tight binding linear muffin tin orbital method at ambient and at high pressure. Other properties like lattice parameter, bulk modulus, density of states, electronic specific heat coefficient, cohesive energy, heat of formation, Debye temperature and Grüneisen constant for CdRE are also estimated. The RE-f effect can be seen in CdPr in terms of variation in the density of states and opens a possibility of structural instability. A pressure induced variation of Debye temperature is also presented for three cadmium rare earth intermetallics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号