首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This fundamental work illustrates for the first time the possibility of exhaustive extraction of peptides using electromembrane extraction (EME) under low system-current conditions (<50 μA). Bradykinin acetate, angiotensin II antipeptide, angiotensin II acetate, neurotensin, angiotensin I trifluoroacetate, and leu-enkephalin were extracted from 600 μL of 25 mM phosphate buffer (pH 3.5), through a supported liquid membrane (SLM) containing di-(2-ethylhexyl)-phosphate (DEHP) dissolved in an organic solvent, and into 600 μL of an acidified aqueous acceptor solution using a thin flat membrane-based EME device. Mass transfer of peptides across the SLM was enhanced by complex formation with the negatively charged DEHP. The composition of the SLM and the extraction voltage were important factors influencing recoveries and current with the EME system. 1-nonanol diluted with 2-decanone (1:1 v/v) containing 15% (v/v) DEHP was selected as a suitable SLM for exhaustive extraction of peptides under low system-current conditions. Interestingly, increasing the SLM volume from 5 to 10 μL was found to be beneficial for stable and efficient EME. The pH of the sample strongly affected the EME process, and pH 3.5 was found to be optimal. The EME efficiency was also dependent on the acceptor solution composition, and the extraction time was found to be an important element for exhaustive extraction. When EME was carried out for 25 min with an extraction voltage of 15 V, the system-current across the SLM was less than 50 μA, and extraction recoveries for the model peptides were in the range of 77–94%, with RSD values less than 10%.  相似文献   

2.
Thirty-five different basic drugs were extracted by electro membrane extraction (EME), from acidified samples containing HCl as the BGE, through an organic solvent immobilized in the pores in the wall of a porous hollow fiber (supported liquid membrane, SLM), and into an acidified acceptor solution (HCl) in the lumen of the hollow fiber by the application of an electrical potential difference of 50 V. With 2-nitrophenyl pentyl ether (NPPE) as the SLM, and with 10 mM HCl as BGE in the sample and acceptor solution, singly charged basic drugs with log P >2 were extracted with recoveries in the range 30-81% within 5 min. For doubly charged basic drugs, extraction was effectively enhanced by decreasing the concentration of HCl in the sample from 10 to 0.1 mM, reducing the ionization of the analytes. For medium polar analytes (1 < log P < 2), an ion balance of 0.01 was combined with addition of tris-(2-ethylhexyl) phosphate (TEHP) to the SLM, and this provided recoveries in the range 36-70%. The ion balance was defined as the concentration ratio of BGE between the sample and the acceptor solution. For the most polar drugs (log P <1), EME was accomplished with an ion balance of 0.01 and with di-(2-ethylhexyl) phosphate (DEHP) added to the SLM, but in spite of this, recoveries were in the range of only 4-17%.  相似文献   

3.
Fundamental experiments on electromembrane extraction were performed to increase the basic knowledge about the current and the mass transfer of target peptides and background electrolyte ions. Three peptides (angiotensin 2, bradykinin, and enkephalin) were extracted from 500 μL aqueous donor solution (1 mM HCl, positive electrode), through a 200 μm supported liquid membrane (SLM) of 1‐octanol/di‐isobutylketon/di‐(2‐ethylhexyl) phosphate (55:35:10 w/w/w) sustained in the pores of a porous hollow fiber, and into 25 μL aqueous acceptor solution (50 mM HCl, negative electrode) present inside the lumen of the fiber by the application of an electrical potential (50 V) and agitation (1050 rpm). Recoveries were typically in the range of 55–65% after 5 min of extraction and were principally determined by the chemical composition of the SLM and by the applied voltage. The electrical current in the system was measured during the extraction and was close to 350 μA. The current arose to some extent from mass transfer of the target peptides, but the major contribution was due to a background current from di‐(2‐ethylhexyl) phosphate in the SLM and from mass transfer of background electrolytes. Operation at relatively low background current was important to maintain a stable system.  相似文献   

4.
By the application of an electrical potential difference (25 V), 37 different peptides were extracted from 500 μL aqueous sample (10 mM formic acid, positive electrode), through a supported liquid membrane (SLM) impregnated in the walls of a porous hollow fiber, and into 25 μL aqueous acceptor solution (100 mM formic acid, negative electrode) present inside the lumen of the fiber. Most of the peptides were obtained by tryptic digestion of cytochrome c and bovine serum albumin, which yielded complex samples for extraction. Three different SLMs were utilized to correlate the peptides extractability with the highly variable physical-chemical properties of the peptides. The first SLM (pure eugenol) provided an electromembrane extraction system for hydrophobic and intermediate peptides (hydrophilicity values below 0.2), where the extraction of peptides into the SLM was mainly based on solvent interactions. The second SLM (1-octanol/di-isobutylketone/di-(2-ethylhexyl) phosphate) extracted both hydrophobic and hydrophilic peptides (hydrophilicity values in the range from -2 to+1) successfully, and the transfer of peptides was principally based on ionic interactions with di-(2-ethylhexyl) phosphate. The third SLM (1-octanol/15-crown-5 ether) was selective for hydrophobic peptides (negative hydrophilicity values), and complexation of the peptides with the crown ether was important for the migration of peptides into the acceptor solution.  相似文献   

5.
The present work has for the first time demonstrated electromembrane extraction (EME) at voltages obtainable by common batteries. Five basic drugs were extracted from acidified aqueous sample solutions, across a supported liquid membrane (SLM) consisting of 1-isopropyl-4-nitrobenzene impregnated in the walls of a hollow fiber, and into an acidified aqueous acceptor solution present inside the lumen of the hollow fiber with potential differences of 1-10 V applied over the SLM. Extractions from 1 ml standard solutions prepared in 10mM HCl for 5 min and with a potential of 10 V demonstrated analyte recoveries of 50-93% in 25 microl of 10mM HCl as acceptor solution. This corresponds to enrichment factors of 20-37. Similar results were obtained with a common 9 V battery as power supply. Recoveries from low-voltage EME on human plasma, urine, and breast milk diluted with acetate buffer (pH 4) demonstrated recoveries in the range of 37-55% after 5 min of extraction. Excellent selectivity was demonstrated as no interfering peaks were detected. Standard curves in the range of 0.0625-0.62 5 microg/ml demonstrated correlation coefficients of 0.994-0.999. Extraction recoveries from human plasma, urine or breast milk were not found to be sensitive towards individual variations. The results show that low-voltage EME has a future potential as a simple, selective, and time-efficient sample preparation technique of biological fluids.  相似文献   

6.
Twenty different basic drugs were electrokinetically extracted across a thin artificial organic liquid membrane with a 300 V d.c. electrical potential difference as the driving force. From a 300 microl aqueous sample (acidified corresponding to 10mM HCl), the drugs were extracted for 5 min through a 200 microm artificial liquid membrane of a water immiscible organic solvent immobilized in the pores of a polypropylene hollow fiber, and into a 30 microl aqueous acceptor solution of 10mM HCl inside the lumen of the hollow fiber. Hydrophobic basic drugs (logP>1.7) were effectively isolated utilizing 2-nitrophenyl octyl ether (NPOE) as the artificial liquid membrane, with recoveries up to 83%. For more hydrophilic basic drugs (logP<1.0), a mixture of NPOE and 25% (w/w) di-(2-ethylhexyl) phosphate (DEHP) was required to ensure efficient extraction, resulting in recoveries up to 75%. DEHP was expected to act as an ion-pair reagent ion-pairing the protonated hydrophilic drugs at the interface between the sample and the membrane, resulting in permeation of the interface.  相似文献   

7.
A totally new concept based on electrokinetic migration was evaluated for the extraction of three biologically active peptides from human plasma. Angiotensin 2, leu-enkephalin, and endomorphin 1 migrated from a diluted human plasma sample (2 mL, positive electrode), through a supported liquid membrane (SLM) of 1-octanol, di-isobutylketon, and di-(2-ethylhexyl) phosphate (DEHP) (55:35:10, w/w/w), and into an acidified acceptor solution (25 μL 50 mM HCl, negative electrode) by the application of an electrical potential (20 V) across the SLM. After only five min of extraction, the acceptor solution was injected and analyzed directly by liquid chromatography. The three peptides were quantified by tandem mass spectrometry, with acceptable linearity ranging from 100.0 to 1000.0 pg mL−1 (r2 in the range 0.9736–0.9988), and repeatability (RSD) ranging between 15% and 24% (n = 5), using plasma spiked with the three peptides in 100 pg mL−1 concentration. The estimated detection limits (S/N ratio of 3:1) for angiotensin 2, leu-enkephalin, and endomorphin 1, were 60, 24, and 24 pg mL−1, respectively. With this novel approach based on electromembrane extraction (EME) coupled to LC–MS/MS, endogenous concentrations of the peptides were detected in non-spiked human plasma samples, with a total analysis time less than 50 min. These experimental findings were highly interesting, and showed the opportunities for EME with regard to future peptide extractions.  相似文献   

8.
Electromembrane extraction (EME) of basic drugs from 10 μL sample volumes was performed through an organic solvent (2-nitrophenyl octyl ether) immobilized as a supported liquid membrane (SLM) in the pores of a flat polypropylene membrane (25 μm thickness), and into 10 μL 10 mM HCl as the acceptor solution. The driving force for the extractions was 3–20 V d.c. potential sustained over the SLM. The influence of the membrane thickness, extraction time, and voltage was investigated, and a theory for the extraction kinetics is proposed. Pethidine, nortriptyline, methadone, haloperidol, and loperamide were extracted from pure water samples with recoveries ranging between 33% and 47% after only 5 min of operation under totally stagnant conditions. The extraction system was compatible with human urine and plasma samples and provided very efficient sample pretreatment, as acidic, neutral, and polar substances with no distribution into the organic SLM were not extracted across the membrane. Evaluation was performed for human urine, providing linearity in the range 1–20 μg/mL, and repeatability (RSD) in average within 12%.  相似文献   

9.
Rapid extraction of eight different peptides using electromembrane extraction (EME) was demonstrated for the first time. During an extraction time of 5 min, the model peptides migrated from a 500 microL aqueous acidic sample solution, through a thin supported liquid membrane (SLM) of an organic liquid sustained in the pores in the wall of a porous hollow fiber, and into a 25 microL aqueous acidic acceptor solution present inside the lumen of the hollow fiber. The driving force of the extraction was a 50 V potential sustained across the SLM, with the positive electrode in the sample and the negative electrode in the acceptor solution. The nature and the composition of the SLM were highly important for the EME process, and a mixture of 1-octanol and 15% di(2-ethylhexyl) phosphate was found to work properly. Using 1mM HCl as background electrolyte in the sample and 100 mM HCl in the acceptor solution, and agitation at 1050 rpm, enrichment up to 11 times was achieved. Recoveries were found to be dependent on the structure of the peptide, indicating that the polarity and the number of ionized groups were important parameters affecting the extraction efficiency. The experimental findings suggested that electromembrane extraction of peptides is possible and may be a valuable tool for future extraction of peptides.  相似文献   

10.
A simple, efficient, and green chitosan‐assisted liquid–solid extraction method was developed for the sample preparation of isoquinoline derivative alkaloids followed by microemulsion LC. The optimized mobile phase consisted of 0.8% w/v of ethyl acetate, 1.0% w/v of SDS, 8.0% w/v of n‐butanol, 0.1% v/v acetic acid, and 10% v/v ACN. Compared to pharmacopoeia method and organic solvent extraction, this new approach avoided the use of volatile organic solvents, replacing them with relatively small amounts of chitosan. Under the optimum conditions, good linearity (r2 > 0.9980) for all calibration curves and low detection limits between 0.05 and 0.10 μg/mL were achieved. The presented procedure was successfully applied to determine alkaloids in Rhizoma coptidis with satisfactory recoveries (81.3–106.4%).  相似文献   

11.
The present study has for the first time demonstrated the isolation of peptides from human plasma by electromembrane extraction (EME). Angiotensin 1, angiotensin 2, and angiotensin 3 migrated from 500 μL of diluted plasma, through a thin layer of 1-octanol and 8% di-(2-ethylhexyl) phosphate immobilized as a supported liquid membrane (SLM) in the pores of a porous hollow fiber, and into a 25 μL aqueous acceptor solution present inside the lumen of the fiber. The driving force for the extraction was a 15 V potential difference applied across the SLM. After only 10 min of EME, the peptides were isolated from diluted plasma (pH 3) with extraction recoveries between 25 and 43%. After optimization, the extraction system was evaluated using spiked plasma samples of angiotensin 2. The evaluation was performed by liquid chromatography electrospray mass spectrometry, showing linearity of angiotensin 2 in the range 2.5–125.0 ng/mL (r2 = 0.989), and repeatability (RSD) between 5.6 and 11.6% (n = 6). The results demonstrate the possibility of isolating angiotensin peptides from plasma in only 10 min, using electromembrane extraction. The experimental findings are therefore promising with regard to future peptide extractions.  相似文献   

12.
Electro-assisted extraction of ionic drugs from biological fluids through a supported liquid membrane (SLM) and into an aqueous acceptor solution was recently introduced as a new sample preparation technique termed electromembrane extraction (EME). The applied electrical potential across the SLM has typically been in the range of 1-300 V. Successful extractions have been demonstrated even with common batteries (9 V) instead of a power supply. The chemical composition of the SLM has been crucial for the selectivity and for the recoveries of the extraction. Compared to other liquid-phase microextraction techniques (LPME), extraction times have been reduced by a factor of 6-17, and successful extractions have been obtained at extraction times of 1-5 min, and even down to a few seconds with online microfluidic EME devices. The technique has provided very efficient sample clean-up and has been found well suited for the extraction of sample sizes in the low μL range. Extractions have been performed with both rod-shaped hydrophobic porous fibers and with flat hydrophobic porous sheets as SLM support. The technique has been successfully downscaled into the micro-chip format. The nature of the SLM has been tuned for extraction of drugs with different polarity allowing extractions to be tailored for specific applications depending on the analyte of interest. The technique has been found to be compatible with a wide range of biological fluids and extraction of drugs directly from untreated human plasma and whole blood has been demonstrated. EME selectively extracts the compounds from the complex biological sample matrix as well as allowing concentration of the drugs. With home-built equipment fully acceptable validation results have been obtained.  相似文献   

13.
The present work has for the first time described nano-electromembrane extraction (nano-EME). In nano-EME, five basic drugs substances were extracted as model analytes from 200 μL acidified sample solution, through a supported liquid membrane (SLM) of 2-nitrophenyl octyl ether (NPOE), and into approximately 8 nL phosphate buffer (pH 2.7) as acceptor phase. The driving force for the extraction was an electrical potential sustained over the SLM. The acceptor phase was located inside a fused silica capillary, and this capillary was also used for the final analysis of the acceptor phase by capillary electrophoresis (CE). In that way the sample preparation performed by nano-EME was coupled directly with a CE separation. Separation performance of 42,000–193,000 theoretical plates could easily be obtained by this direct sample preparation and injection technique that both provided enrichment as well as extraction selectivity. Compared with conventional EME, the acceptor phase volume in nano-EME was down-scaled by a factor of more than 1000. This resulted in a very high enrichment capacity. With loperamide as an example, an enrichment factor exceeding 500 was obtained in only 5 min of extraction. This corresponded to 100-times enrichment per minute of nano-EME. Nano-EME was found to be a very soft extraction technique, and about 99.2–99.9% of the analytes remained in the sample volume of 200 μL. The SLM could be reused for more than 200 nano-EME extractions, and memory effects in the membrane were avoided by effective electro-assisted cleaning, where the electrical potential was actively used to clean the membrane.  相似文献   

14.
本文建立了悬浮固化分散液相微萃取(DLLME-SFO)高效液相色谱-串联质谱法(HPLC-MS/MS)测定环境水样品中壬基雌酚、双酚A、己烯雌酚、雌酮、雌二醇、炔雌醇6种雌激素的分析方法。萃取的最优条件为:以90μL 1-十二醇为萃取剂,250μL0.025mol/L Triton X-100为分散剂,调节pH至7.0,超声3min,在室温条件下萃取环境水样中的雌激素残留。最优条件下,该方法在三个浓度水平下的平均加标回收率为93.4%~108.6%,相对标准偏差为1.3%~8.7%,检出限为0.001~0.05μg/L。将该方法应用于环境水样中雌激素残留分析,获得了较好的回收率。  相似文献   

15.
Electromembrane extraction (EME) of polar basic drugs from human plasma was investigated for the first time using pure bis(2-ethylhexyl) phosphite (DEHPi) as the supported liquid membrane (SLM). The polar basic drugs metaraminol, benzamidine, sotalol, phenylpropanolamine, ephedrine, and trimethoprim were selected as model analytes, and were extracted from 300 μL of human plasma, through 10 μL of DEHPi as SLM, and into 100 μL of 10 mM formic acid as acceptor solution. The extraction potential across the SLM was 100 V, and extractions were performed for 20 min. After EME, the acceptor solutions were analyzed by high-performance liquid chromatography-ultraviolet detection (HPLC-UV). In contrast to other SLMs reported for polar basic drugs in the literature, the SLM of DEHPi was highly stable in contact with plasma, and the system-current across the SLM was easily kept below 50 μA. Thus, electrolysis in the sample and acceptor solution was kept at an acceptable level with no detrimental consequences. For the polar model analytes, representing a log P range from −0.40 to 1.32, recoveries in the range 25–91% were obtained from human plasma. Strong hydrogen bonding and dipole interactions were probably responsible for efficient transfer of the model analytes into the SLM, and this is the first report on efficient EME of highly polar analytes without using any ionic carrier in the SLM.  相似文献   

16.
利用同位素稀释技术,建立了肉肠中4种β2-受体激动剂克伦特罗、莱克多巴胺、沙丁胺醇和特布他林的基质固相分散/高效液相色谱-串联质谱(MSPD/HPLC-MS/MS)分析方法。样品经C18填料研磨,甲醇洗脱,提取物经酶解后,用MCX小柱净化,经高效液相色谱分离,在正离子多反应监测(MRM)模式下用电喷雾电离串联质谱测定,内标法定量。4种β2-受体激动剂在0.2~20.0μg/L质量浓度范围内呈良好的线性关系,相关系数(r2)均大于0.990;沙丁胺醇和克伦特罗的检出限为0.10μg/kg;莱克多巴胺和特布他林的检出限为0.15μg/kg;方法的回收率为80%~109%,相对标准偏差小于10%。该方法简便快捷、灵敏度高,样品和溶剂用量少,可满足肉肠中4种β2-受体激动剂残留的快速检测。  相似文献   

17.
A simple sample pretreatment device was developed employing extractions across supported liquid membranes (SLMs) and in‐line coupling to a commercial CE instrument. The device consisted of two polypropylene conical units interspaced with a polypropylene planar SLM, which were impregnated with 1‐ethyl‐2‐nitrobenzene. The two units and the SLM were pressed against each other, donor unit was filled with 40 μL of an untreated body fluid and acceptor unit with 40 μL of DI water. The device was then placed into conventional CE vial fitted with a soft spring, which was depressed during injection into CE capillary and ensured that the SLM was not ruptured. Position of separation capillary injection end and high‐voltage electrode in the CE instrument was optimized in order to ensure efficient injection of pretreated body fluids. The device can be easily assembled/disassembled and SLMs can be replaced after each extraction thus minimizing sample carry‐over, avoiding tedious SLM regeneration, and reducing total pretreatment time and costs. The pretreatment device was examined by direct injection of human urine and serum spiked with nortriptyline, haloperidol, and loperamide. The basic drugs were diffusionaly transported across the SLM within 10 min and were injected into the separation capillary directly from the SLM surface in the acceptor unit, whereas matrix components were retained by the SLM. The in‐line SLM‐CE method showed good repeatability of peak areas (3.8–11.0%) and migration times (below 1.4%), linear relationship (r2 = 0.990–0.999), and low LODs (12–100 μg/L).  相似文献   

18.
汤娟  费晓庆  周佳  钱凯  董绍伟  曹丽华  丁友超 《色谱》2021,39(3):324-330
建立了同时测定化妆品中18种氯代烃类有机溶剂的气相色谱-质谱(GC-MS)检测方法。样品在饱和氯化钠溶液中由正十四烷振荡提取后,以Agilent J&W DB-624超高惰性毛细管柱(30 m×0.25 mm×1.4 μm)为分离色谱柱进行分析,以电子轰击(EI)源、SIM模式进行质谱监测,外标法定量。结果表明,18种化合物在19 min内完成色谱分离分析,检出限(LOD, S/N=3)和定量限(LOQ, S/N=10)分别为0.033~0.049 mg/L和0.10~0.15 mg/L, 18种氯代烃类有机溶剂在0.2~100 mg/L线性范围内线性关系良好,相关系数(R2)均不小于0.9992。以阴性样品口红(固体)和漱口水(液体)为样品基质,在不同添加水平下,18种氯代烃类有机溶剂的平均回收率分别为92.4%~103.1%和93.3%~102.4%,相对标准偏差(RSD, n=6)分别为3.1%~5.3%和2.8%~5.4%。采用该方法对115个化妆品样品进行测定,3个指甲油样品均检测出四氯乙烯,测定值为11.4~42.0 g/kg。研究建立的方法采用高沸点溶剂作为进样溶剂,取消溶剂延迟时间,使只能在溶剂延迟时间出峰的化合物得到有效色谱分离,分析时间短,且重复性好,灵敏度高,可同时检测各种化妆品中多种氯代烃类有机溶剂。该方法的建立为我国化妆品中氯代烃类有机溶剂检测标准的制订和质量安全监控提供了参考。  相似文献   

19.
Planar polyamide 6 nanofibrous membrane was for the first time used in direct coupling of supported liquid membrane (SLM) extraction to CE analysis. Disposable microextraction device with the nanofibrous membrane was preassembled and stored for immediate use. The membrane in the device was impregnated with 1 µL of 1‐ethyl‐2‐nitrobenzene and the device was subsequently filled with 10 µL of acceptor solution (10 mM HCl) and 15 µL of donor solution (sample). The device was in‐line coupled to CE system for selective extraction and direct injection, separation and quantification of model basic drugs (nortriptyline, haloperidol, loperamide and papaverine) from standard saline solutions (150 mM NaCl) and from undiluted human body fluids (urine and blood plasma). Compared to standard polypropylene supporting material, the nanofibrous membrane demonstrated superior characteristics in terms of lower consumption of organic solvents, constant volumes of operational solutions, full transparency and possibility to preassemble the devices. Extraction parameters were better or comparable for the nanofibrous vs. the polypropylene membrane and the hyphenated SLM‐CE method with the nanofibrous membrane was characterized by good repeatability (RSD ≤ 11.3%), linearity (r2 ≥ 0.9953; 0.5–20 mg/L), sensitivity (LOD ≤ 0.4 mg/L) and transfer (27–126%) of the basic drugs.  相似文献   

20.
Dispersive liquid–liquid microextraction based on solidification of floating organic drop coupled with HPLC‐UV detection as a fast and inexpensive technique was applied to the simultaneous extraction and determination of traces of two common herbicides, alachlor and atrazine, in aqueous samples. The critical experimental parameters, including type of the extraction and disperser solvents as well as their volumes, sample pH, salt addition, and extraction time were investigated and optimized. Under the optimum conditions, the calibration graphs found to be linear in the range of 0.1–200 μg/L with LOD in the range of 0.02–0.05 μg/L. The RSDs were in the range of 4.2–5.3% (n = 5). The relative recoveries of well, tap, and river water samples which have been spiked with different levels of herbicides were 94.0–106.0, 99.0–105.0, and 88.5–97.0%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号