首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
建立微波消解-原子荧光光谱法测定植物样品中砷和硒的含量。微波消解后残留的有机颗粒和硝酸等会对测定结果造成影响,因此需要将硝酸除尽。在驱除硝酸过程中加入高氯酸,加热至溶液冒白烟,避免硒挥发损失。该方法砷、硒的检出限分别为6.8,4.0 ng/g(稀释因子40),测定结果的相对标准偏差分别为3.65%,3.52%(n=12),加标回收率分别为94.5%~104.6%,92.2%~98.9%。经过国家一级标准物质验证,该方法准确可靠。  相似文献   

2.
Determination of arsenic species in marine samples by HPLC-ICP-MS.   总被引:1,自引:0,他引:1  
Arsenic speciation analysis in marine samples was performed using high performance liquid chromatography (HPLC) with ICP-MS detection. The separation of eight arsenic species viz. arsenite (As(III)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenate (As(V)), arsenobetaine, trimethylarsine oxide (TMAO), arsenocholine and tetramethylarsonium ion (TeMAs) was achieved on a Shiseido Capcell Pak C18 column by using an isocratic eluent (pH 3.0), in which condition As(III) and MMA were co-eluted. The entire separation was accomplished in 15 min. The detection limits for 8 arsenic species by HPLC/ICP-MS were in the range of 0.02 - 0.10 microg L(-1) based on 3sigma of blank response (n=9). The precision was calculated to be 3.1-7.3% (RSD) for all eight species. The method then successfully applied to several marine samples e.g., oyster, scallop, fish, and shrimps. For the extraction of arsenic species from seafood products, the low power microwave digestion was employed. The extraction efficiency was in the range of 52.9 - 112.3%. Total arsenic concentrations were analyzed by using the microwave acid digestion. The total arsenics in the certified reference materials (DORM-2 and TORT-2) were analyzed and agreed with the certified values. The concentrations of arsenics in marine samples were in the range 6.6 - 35.1 microg g(-1).  相似文献   

3.
Arsenic speciation analysis in marine samples was performed using ion chromatography (IC) with inductively coupled plasma mass spectrometry (ICP‐MS) detection. The separation of eight arsenic species, viz. arsenite, monomethyl arsonic acid, dimethylarsinic acid, arsenate, arsenobetaine, tetramethylarsine oxide, arsenocholine and tetramethylarsonium ion was achieved on a Dionex AS4A (weaker anion exchange column) by using a nitric acid pH gradient eluent (pH 3.3 to 1.3). The entire separation was accomplished in 12 min. The detection limits for the eight arsenic species by IC–ICP‐MS were in the range 0.03–1.6 µ g l?1, based on 3σ of the blank response (n = 6). The repeatability and day‐to‐day reproducibility were calculated to be less than 10% (residual standard deviation) for all eight species. The method was validated by analyzing a certified reference material (DORM‐2, dogfish muscle) and then successfully applied to several marine samples, e.g. oyster, fish muscle, shrimp and marine algae. The low power microwave digestion was employed for the extraction of arsenic from seafood products. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Optimization of acid digestion method for mercury determination in marine biological samples (dolphin liver, fish and mussel tissues) using a closed vessel microwave sample preparation is presented. Five digestion procedures with different acid mixtures were investigated: the best results were obtained when the microwave-assisted digestion was based on sample dissolution with HNO3-H2SO4-K2Cr2O7 mixture. A comparison between microwave digestion and conventional reflux digestion shows there are considerable losses of mercury in the open digestion system. The microwave digestion method has been tested satisfactorily using two certified reference materials. Analytical results show a good agreement with certified values. The microwave digestion proved to be a reliable and rapid method for decomposition of biological samples in mercury determination.  相似文献   

5.
A microwave digestion procedure for asphaltite ash was developed in an attempt to facilitate routine analysis and obtain reproducible conditions or comparable results. The conditions of the most effective procedure for 0.1 g asphaltite ash samples are 1 ml of HNO3 + 3 ml of HCl + 1 ml of HF + 1 ml of deionized water as acid mixture and 15 min for digestion time. The digestion was accomplished in five stages applying continuously 90% to 20% of the microwave power and 20 to 100 psi of the pressure for 10 min of total time. Concentrations of selected elements, Cr, Co, Fe, Mn, Ni and Zn were measured using inductively coupled plasma-atomic emission spectroscopy. The proposed method of digestion provided precise results with relative standard deviations generally less than 3% for investigated elements. Results for fly ash as standard reference material was in good agreement with certified values.  相似文献   

6.
微波消解-氢化物发生原子荧光法同时测定土壤中的砷汞   总被引:10,自引:0,他引:10  
建立了微波消解-氢化物发生原子荧光法同时测定土壤中As、Hg的分析方法。用体积分数35%的王水作为消解溶剂,在设定的微波消解条件下,可以将土壤中的As、Hg提取完全,有效解决了消解液中剩余酸过多的问题。方法用体积分数5%的HCl作为反应介质,20 g/L NaBH4作为还原剂。通过测定国家标准参考物质和加标回收实验,对方法进行了验证。已用于土壤中As、Hg的测定。  相似文献   

7.
一次消解土壤样品测定汞、砷和硒   总被引:3,自引:0,他引:3  
建立了测定土壤中3种挥发性元素(汞、砷、硒)的一次消解方法,确定以程序控温石墨自动消解仪+王水-氢氟酸-硼酸络合敞开体系为最佳消解体系,采用氢化物发生-原子荧光光谱法(HG-AFS)分别测定同一消解液中汞、砷、硒的含量.采用国家标物中心有证标准物质土壤环境样品GSS-1~GSS-8进行了方法验证,结果均符合标准偏差的允许范围.此消解方法相比于现行标准方法,避免了针对各元素的分次处理,简化了消解步骤,节省了前处理时间,减少了试剂消耗,提高了实验效率,适用性广、灵敏度高、检出限低,尤其适合批量样品的微量/痕量元素分析,可作为一种大规模土壤样品中重金属污染监测和治理的快捷方法.  相似文献   

8.
The toxic properties of arsenic are well known. Honey has been widely used for monitoring this element. The present work reports a novel method for the determination of arsenic in honey, bees, pollen, and propolis, based on the coupling of microwave digestion and hydride generation. Method development included the quantitative reduction of arsenic(V) to arsenic(III), the acid used for dilution, and the complete removal of the gases following digestion. The method performance was satisfactory with recoveries between 83% and 111% and corresponding relative standard deviations between 3.1% and 24%. Among the 32 samples of honey, propolis, pollen, and honey bees analyzed, arsenic was detected in four out of six propolis samples at the method limit of detection (0.4?µg?g?1). The results indicate that propolis may be an efficient indicator for arsenic.  相似文献   

9.
A microwave-assisted double insert multimode vapour-phase digestion method was developed for the digestion of organic samples. The experimental set-up was based on a third generation-type teflon microwave vessel, equipped with an automatic pressure regulating type vessel cover. A borosilicate glass holder insert, containing a smaller quartz sample insert, was fitted inside the vessel. Sulphuric acid was added to the holder insert as a microwave absorbing and temperature transferring liquid, which transferred heat to the sample insert (into which the sample was weighed) and charred the sample material. Oxidation of the sample material was carried out simultaneously with charring using nitric acid vapour, which was generated by the 1:1 (v/v) sulphuric acid-nitric acid mixture located in the bottom of the microwave vessel. This set-up generated high digestion efficiency, without any of the interferences normally associated with direct sulphuric acid usage. The method was used for determining the concentrations of Cd, Cr, Cu, Mn, Mo, Zn and Fe in certified organic reference materials using ICP-OES instrumentation. The certified organic reference materials were NRCC DOLT-2 dogfish liver, NIST-SRM 1577b bovine liver and IRMM VDA cadmium in polyethylene No. 001 and No. 004. The results were in good agreement with the certified values, forepart from Cd. For Cd the results were lower than the certified values due to volatilization losses. Sample materials that could not be digested by an earlier procedure were completely digested during a single-step, 30 min digestion. The tested sample materials included certified reference materials, 3-nitrobenzoic acid (3-NBA) and pike (Esox lucius) muscle. The residual carbon concentrations in the digestion solutions were below the detection limit of the TOC instrument. This type of digestion method is described here for the first time in the literature.  相似文献   

10.
称取0.25g样品加入5 mL硝酸和2 mL氢氟酸,用微波消解技术对样品进行前处理.以Re作为As、Pb、Tl的内标,Rh作为Cd、Co、Cr、Ni的内标,Bi作为Be、Cu、Zn的内标,Tb作为V的内标,建立了KED模式下微波消解电感耦合等离子体质谱(ICP-MS)法同时测定土壤中Be、As、Cd、Co、Cr、Cu、...  相似文献   

11.
A microwave heated, vapor-phase nitric acid-hydrogen peroxide digestion method for pulverized, biological sample materials was developed. Sample masses up to 200 mg were digested using calibrated quartz inserts inside first generation type, low-pressure, Teflon-PFA microwave vessels. In the first step, samples were digested in the vapor-phase for 80 min using a progressive heating pattern. Three mL of 70% nitric acid and 0.5 mL of 30% hydrogen peroxide were used as digestion reagents. In the second step, the small residue left after first step digestion was dissolved in 1.4% nitric acid or additionally with 0.5% hydrofluoric acid by heating for 15 min. The digestion method was optimized using pike (Esox lucius) muscle as a test material. The method was further optimized using three certified reference materials. Ca, Cu, Fe, Mg and ¶Zn were determined from NIST-SRM 1577a bovine liver by ICP-AES. Cr and Ni were determined from NIST-SRM 8433 corn bran and NRCC DOLT-2 dogfish liver by GFAAS. For all elements the values obtained were close or within certified limits. Spike recoveries were between 96 to 107%. Digestion efficiency ranged from 91 to 99%.  相似文献   

12.
 High-pressure digestion and a closed-vessel microwave heated system, both employing a mixture of nitric acid and hydrogen peroxide as digesting agent, were tested for decomposing the certified samples of BCR 278 mussel tissue (Mytilus edulis) and of BCR 422 cod muscle to determine arsenic by use of FI-HG-AAS. While the microwave system is insufficient to mineralize arsenic in marine samples (arsenic recoveries of 13±10% in BCR 278, 2±1% in BCR 422; n=4), high-pressure ashing at 300 °C results in recovery percentages of 56±15% (n=4) in mussel tissue (BCR 278) and of 25±10% (n=4) in cod muscle (BCR 422). A dry ashing procedure is given as a reference digestion, yielding complete recoveries of arsenic for both materials. The nitrite interference arising during measurement can be entirely overcome by using an amino sulfuric acid concentration of about 350 mmol/L in the solutions for measurement. Received: 30 April 1996/Revised: 12 July 1996/Accepted: 16 July 1996  相似文献   

13.
Eilola K  Perämäki P 《The Analyst》2003,128(2):194-197
A previously developed microwave heated vapor-phase digestion method for biological samples was modified to enable digestion of difficult to digest organic samples. Organic samples containing ca. 100 mg of organic carbon were digested using volume calibrated quartz inserts inside second generation type medium pressure microwave vessels. As digestion reagents, 98% sulfuric acid, 70% nitric acid and 30% hydrogen peroxide were used. The accuracy of the method was tested with six certified reference materials. Elements Ca, Fe, K, Na, Mg, P and Zn were determined from NIST-SRM 8433 corn bran. Elements Al, Fe, Cd, Cu, and Zn were determined from NRCC DOLT-2 dogfish liver. The element Cd was determined from IRMM-VDA Cd in polyethylene No. 001-004 reference materials. These elements were determined from digested samples by ICP-OES. The results were close or within certified limits. The modified method could digest nearly all the materials tested, including the above mentioned reference materials, 2-nitrobenzoic acid (2-NBA), 4-NBA and copper(II) phthalosyanine-3, 4',4',4'-tetrasulfonic acid tetrasodium salt (CPS). The method could not digest 3-NBA.  相似文献   

14.
A microwave heated, vapor-phase nitric acid-hydrogen peroxide digestion method for pulverized, biological sample materials was developed. Sample masses up to 200 mg were digested using calibrated quartz inserts inside first generation type, low-pressure, Teflon-PFA microwave vessels. In the first step, samples were digested in the vapor-phase for 80 min using a progressive heating pattern. Three mL of 70% nitric acid and 0.5 mL of 30% hydrogen peroxide were used as digestion reagents. In the second step, the small residue left after first step digestion was dissolved in 1.4% nitric acid or additionally with 0.5% hydrofluoric acid by heating for 15 min. The digestion method was optimized using pike (Esox lucius) muscle as a test material. The method was further optimized using three certified reference materials. Ca, Cu, Fe, Mg and Zn were determined from NIST-SRM 1577a bovine liver by ICP-AES. Cr and Ni were determined from NIST-SRM 8433 corn bran and NRCC DOLT-2 dogfish liver by GFAAS. For all elements the values obtained were close or within certified limits. Spike recoveries were between 96 to 107%. Digestion efficiency ranged from 91 to 99%.  相似文献   

15.
Mason CJ  Coe G  Edwards M  Riby P 《The Analyst》2000,125(10):1875-1883
A flow through microwave digestion device has been developed for the determination of Cd, Cr, Mn, Ni and Pb in soil by aqua regia extraction. This device differs from existing commercially available devices as it uses a double pumping action to replace the back pressure regulator traditionally used to achieve internal pressurisation. An acid front has also been included to overcome problems associated with the dilution of acid in samples due to dispersion. Recoveries between 95 and 105% of certified values were achieved with standard deviations of less than 4% for certified reference soil (BCR 143R). A sample throughput of 6 samples per hour was achieved in the optimised system. The performance of the device was tested by digesting real soil samples ground through a 250 microns sieve and slurried without the use of surfactants. A comparison of analytical performance for analysing real samples was made between the microwave flow method and a thermal method.  相似文献   

16.
称取0.25 g样品加入5ml硝酸和2ml氢氟酸,用微波消解技术对样品进行前处理。以Re作为As、Pb、Tl的内标,Rh作为Cd、Co、Cr、Ni的内标,Bi作为Be、Cu、Zn的内标,Tb作为V的内标,建立了KED模式下可同时测定土壤中Be、As、Cd、Co、Cr、Cu、Ni、Pb、Tl、V、Zn 11种金属元素的微波消解ICP-MS方法。该方法线性关系良好,线性相关系数均在0.9990以上,检出限为0.002mg/kg-0.054 mg/kg。检测土壤标准物质GSS-17、GSS-18验证方法准确性,结果显示测定值均在标准差允许范围内,相对标准偏差在0.29%-5.33%,是一种快速、可靠的土壤多种金属元素检测方法。  相似文献   

17.
A new method using microwave digestion combined with inductively coupled plasma-mass spectrometry (ICP-MS) was studied to analyze the elemental composition of a variety of komatiites samples. Microwave digestion consisted in two-stage heating and pressurizing acid treatments for maximum dissolution of the samples. We report here different quality control measurements (external and internal calibration, monitoring of reference materials) which involve standard deviation calculations and recovery examinations in order to test the precision and accuracy of the analytical procedure. Data for 17 elements (Na, P, K, T, V Cr, Mn, Co, Ni, Cu, Zn, Zr, Pb, Al, F, Ca and Mg) in eight komatiite samples and two USGS basalt reference samples (BCR-2 and BHVO-2) are presented. We evaluate our new digestion and instrumental procedure. The element concentration obtained for BCR-2 and BHVO-2 agreed well with the certified values, the relative standard deviations were lower than 5% and recoveries were good. Our analytical results demonstrate that it reproduces accurately the concentrations of minor and trace elements in komatiites. The ease of digestion of the samples and the speed (less than 12 h) to digest the komatiite material makes this technique an efficient method to be used easily and routinely for preparing and analyzing komatiites samples for multiple elements determination.  相似文献   

18.
Methyl mercury was determined by gas chromatography, microwave induced plasma, atomic emission spectrometry (GC-MIP-AES) using two different methods. One was based on extraction of mercury species into toluene, pre-concentration by evaporation and butylation of methyl mercury with a Grignard reagent followed by determination. With the other, methyl mercury was extracted into dichloromethane and back extracted into water followed by in situ ethylation, collection of ethylated mercury species on Tenax and determination. The accuracy of the entire procedure based on butylation was validated for the individual steps involved in the method. Methyl mercury added to various types of soil samples showed an overall average recovery of 87.5%. Reduced recovery was only caused by losses of methyl mercury during extraction into toluene and during pre-concentration by evaporation. The extraction of methyl mercury added to the soil was therefore quantitative. Since it is not possible to directly determine the extraction efficiency of incipient methyl mercury, the extraction efficiency of total mercury with an acidified solution containing CuSO4 and KBr was compared with high-pressure microwave acid digestion. The solvent extraction efficiency was 93%. For the IAEA 356 sediment certified reference material, mercury was less efficiently extracted and determined methyl mercury concentrations were below the certified value. Incomplete extraction could be explained by the presence of a large part of inorganic sulfides, as determined by x-ray absorption near-edge structure spectroscopy (XANES). Analyses of sediment reference material CRM 580 gave results in agreement with the certified value. The butylation method gave a detection limit for methyl mercury of 0.1 ng g(-1), calculated as three times the standard deviation for repeated analysis of soil samples. Lower values were obtained with the ethylation method. The precision, expressed as RSD for concentrations 20 times above the detection limit, was typically 5%.  相似文献   

19.
建立了微波消解前处理,全反射X射线荧光法(TXRF)同时测定松花粉中K、Ca、Ti、Mn、Fe、Ni、Cu、Zn和Rb9种生命元素含量的分析方法.松花粉原料经过微波消解前处理后,采用全反射X射线荧光光谱净计数、QXAS分析软件解谱和单一内标法进行定量分析.比较了干灰化法、湿消解法和微波消解法3种前处理方法的效果,并确立微波消解法作为样品前处理方法.用微波消解- TXRF法测定了花粉标准物质中的上述9种元素,并计算得到其仪器检出限(LLD)为0.002~0.054 mg/L,方法检出限(LDM)为0.004~0.122 mg/kg.TXRF法测定各元素的相对标准偏差(RSDs)为1.0%~5.5%.该方法操作简单、样品用量少、检出限低,对实际样品松花粉的测定结果与ICP - MS法无显著性差异.  相似文献   

20.
(Microwave digestion of plant material for trace element determination.) A digestion method utilizing a mixture of nitric acid, hydrofluoric acid and hydrogen peroxide in closed vessels with a microwave system was developed for the determination of trace elements in plant materials and was tested on NIST standard reference materials [Citrus Leaves (SRM 1572) and Pine Needles (SRM 1575)] for Al, As, Ba, Cr, Cu, Fe, K, Mg, Mn, Ni, P, Pb, Rb, Sr and Zn. Analyses were done by d.c. plasma atomic emission spectrometry. The results showed high reproducibility and good agreement with the certified values. Rapid ashing and dissolution of plant material, reduced sources of contamination and the simplicity of the system make the microwave digestion system suitable for routine laboratory application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号