首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 525 毫秒
1.
The phosphorescence excitation (PE) spectrum of 4H-pyran-4-one (4PN) vapor at 40-50 degrees C was recorded near 366 nm. The most intense vibronic feature in this region of the spectrum is the T(1)(n,pi*)<--S(0) origin band. The value of nu(0) for the 0(0)(0) transition was determined to be 27 291.5 cm(-1) by comparing the observed spectrum to a simulation in the T(1)<--S(0) origin-band region. Attached to the origin band in the PE spectrum are several Deltav=0 sequence bands involving low-frequency ring modes. From the positions of these bands, together with the known ground-state combination differences, fundamental frequencies for nu(18') (ring bending), nu(13') (ring twisting), and nu(10') (in-plane ring deformation) in the T(1)(n,pi*) excited state were determined to be 126, 269, and 288 cm(-1), respectively. These values represent drops of 15%, 32%, and 43%, compared to the respective fundamental frequencies in the S(0) state. The changes in these ring frequencies indicate that the effects of T(1)(n,pi*)<--S(0) excitation extend beyond the nominal carbonyl chromophore and involve the conjugated ring atoms as well. The delocalization may be more extensive for T(1)(n,pi*) than for S(1)(n,pi*) excitation.  相似文献   

2.
Invisible energy levels of the T1(pi, pi*) state of p-methoxybenzaldehyde (anisaldehyde) and p-cyanobenzaldehyde vapors have been estimated through the temperature dependence of the T2(n, pi*) --> S0 phosphorescence and the S1(n, pi*) --> S0 delayed fluorescence spectra. It is shown that the T1(pi, pi*) levels are located at 900 +/- 100 and 300 +/- 100 cm(-1) below the T2(n, pi*) levels, respectively, for p-methoxybenzaldehyde and p-cyanobenzaldehyde vapors. The estimated T1 energy levels are in good agreement with the phosphorescence origins in rigid glass at 77 K.  相似文献   

3.
Excitation and pressure dependence of fluorescence and phosphorescence quantum yields has been reinvestigated in detail for quinoxaline in the static vapor phase at pressure range from 10(-3) to 10(-1) Torr. It is shown that the ratio of the nonradiative rate from T(1)(pi, pi*) to the rate of the S(1)(n, pi*) approximately -->T(1)(pi, pi*) intersystem crossing decreases with increasing the excitation energy in the S(0)-->S(1) excitation region. The phosphorescence quantum yield measured as a function of the excitation energy at low pressure shows an abrupt decrease on going the excitation from S(0)-->S(1) to S(0)-->S(2), indicating the slow vibrational energy redistribution between the S(1) levels optically populated and those populated through the internal conversion from S(2) to S(1).  相似文献   

4.
The well-known benzophenone intersystem crossing from S(1)(n,pi*) to T(1)(n,pi*) states, for which direct transition is forbidden by El-Sayed rules, is reinvestigated by subpicosecond time-resolved absorption spectroscopy and effective data analysis for various excitation wavelengths and solvents. Multivariate curve resolution alternating least-squares analysis is used to perform bilinear decomposition of the time-resolved spectra into pure spectra of overlapping transient species and their associated time-dependent concentrations. The results suggest the implication of an intermediate (IS) in the relaxation process of the S(1) state. Therefore, a two step kinetic model, S(1) --> IS --> T(1), is successfully implemented as an additional constraint in the soft-modeling algorithm. Although this intermediate, which has a spectrum similar to the one of T(1)(n,pi*) state, could be artificially induced by vibrational relaxation, it is tentatively assigned to a hot T(1)(n,pi*) triplet state. Two characteristic times are reported for the transition S(1) --> IS and IS --> T(1), approximately 6.5 ps and approximately 10 ps respectively, without any influence of the solvent. Moreover, an excitation wavelength effect is discovered suggesting the participation of unrelaxed singlet states in the overall process. To go further discussing the spectroscopic relevancy of IS and to rationalize the expected involvement of the T(2)(pi,pi*) state, we also investigate 4-methoxybenzophenone. For this neighboring molecule, triplet energy level is tunable through solvent polarity and a clear correlation is established between the intermediate resolved by multivariate data analysis and the presence of a T(2)(pi,pi*) above the T(1)(n,pi*) triplet. It is therefore proposed that the benzophenone intermediate species is a T(1)(n,pi*) high vibrational level in interaction with T(2)(pi,pi*) state.  相似文献   

5.
The vibrational structure, rotational structure, and electronic relaxation of the "dark" T1 3A2(n,pi*) state of jet-cooled thiophosgene have been investigated by two-color S2<--T1<--S0 optical-optical double resonance (OODR) spectroscopy, which monitors the S2-->S0 fluorescence generated by S2<--T1 excitation. This method is capable of isolating the T1 vibrational structure into a1, b1, and b2 symmetry blocks. The fluorescence-detected vibrational structure of the Tz spin state of T1 shows that the CS stretching frequency as well as the barrier height for pyramidal deformation are significantly greater in the 3A2(n,pi*) state than in the corresponding 1A2(n,pi*) state. The differing vibrational parameters of the T1 thiophosgene relative to the S1 thiophosgene can be attributed to the motions of unpaired electrons that are better correlated when they are in the excited singlet state than when they are in the triplet state of same electron configuration. A set of T1 structural parameters and the information concerning the T1 spin states have been obtained from least-square fittings of the rotationally resolved T1<--S0 excitation spectrum. The nearly degenerate mid R:x and mid R:y spin states are well removed from mid R:z spin component, indicating that T1 thiophosgene is a good example of case (ab) coupling. The decay of the mid R:z spin state of T1 thiophosgene, obtained from time-resolved S2<--T1<--S0 OODR experiment, is characteristic of strong-coupling intermediate-case decay in which an initial rapid decay is followed by recurrences and/or a long-lived quasiexponential decay.  相似文献   

6.
The excited triplet-state transient time profiles of 1,4-anthraquinone (1,4-AQ) have been measured in a degassed CCl4 fluid solution at different temperatures near room temperature, together with the steady-state emission spectra, which consist of the S1(n, pi*) and weak S2(pi, pi*) fluorescence at room temperature, and of the T1(pi, pi*) phosphorescence at 77 K. Quantitative analysis of the T1 triplet decay profiles measured as a function of temperature provides estimates for the energy and rates that characterize the excited-state dynamical behavior of 1,4-AQ.  相似文献   

7.
Emission and excitation spectra of 2-, 3- and 4-pyridinecarboxaldehyde (2-, 3- and 4-PCA, respectively) vapors have been measured at different temperatures and compared to one another. The emission spectra of these vapors are shown to consist of the T(1)(n, pi) --> S(0) phosphorescence accompanied by the weak thermally activated S(1)(n, pi) --> S(0) delayed fluorescence. Two peaks originating from the two rotamers (syn and anti) have been identified in the fluorescence, phosphorescence and excitation spectra of 3-PCA vapor. Analyses of the temperature dependence and vibrational structure of the spectra of 3-PCA vapor provide the syn-anti energy difference of 190 +/- 30 cm(-1) in the T(1) (n, pi) state, 200 +/- 30 cm(-1) in the S(1)(n, pi) state, and 290 +/- 35 cm(-1) in the ground state. The ground-state energy difference is in agreement with the result of density functional theory (DFT) calculation for 3-PCA vapor. DFT calculation demonstrated also that the syn rotamer exists as a less stable isomer in the ground state for 2- and 3-PCA vapors.  相似文献   

8.
Vibronic optical emissions from CS(A1pi --> X1sigma+) and CS(a3pi --> X1sigma+) transitions have been identified from dissociative recombination (DR) of CS2(+) and HCS2(+) plasmas. All of the spectra were taken in flowing afterglow plasmas using an optical monochromator in the UV-visible wavelength region of 180-800 nm. For the CS(A --> X) and CS(a --> X) emissions, the relative vibrational distributions have been calculated for v' < 5 and v' < 3 in both types of plasmas for the CS(A) and CS(a) states, respectively. Both recombining plasmas show a population inversion from the v' = 0 to v' = 1 level of the CS(A) state, similar to other observations of the CS(A) state populations, which were generated using two other energetic processes. The possibility of spectroscopic cascading is addressed, such that transitions from upper level electronic states into the CS(A) and CS(a) states would affect the relative vibrational distribution, and there is no spectroscopic evidence supporting the cascading effect. Additionally, excited-state transitions from neutral sulfur (S(5S(2)0 --> 3P(2)) and S(5S(2)0 --> 3P(1))) and the products of ion-molecule reactions (CS(B1sigma+ --> A1pi), CS(+)(B2sigma+ --> A2pi(i)), and CS2(+) (A2pi(u) --> X2pi(g))) have been observed and are discussed.  相似文献   

9.
The two components of the dual phosphorescence of 1-indanone ( 1 ) and six related ketones ( 2–7 ) possess different excitation spectra exhibiting the vibrational progression characteristic of the S0 → S1 (n, π*) transition (shorter-lived emission) and two bands of the S0 → S2 and 3 (π,π*) 0–0 transitions, respectively. The most favorable intersystem crossing routes are S1 (n, π*) → T (n, π*) and S2,3 (π*) → T (π, π*). Internal conversion to S1 competes more effectively with S (π, π*) → T (π, π*) intersystem crossing only from higher vibrational levels of the S2 and S3 states.  相似文献   

10.
The fluorescence excitation (jet cooled), single vibrational level fluorescence, and the ultraviolet absorption spectra of coumaran associated with its S1(pi,pi*) electronic excited state have been recorded and analyzed. The assignment of more than 70 transitions has allowed a detailed energy map of both the S0 and S1 states of the ring-puckering (nu45) vibration to be determined in the excited states of nine other vibrations, including the ring-flapping (nu43) and ring-twisting (nu44) vibrations. Despite some interaction with nu43 and nu44, a one-dimensional potential energy function for the ring puckering very nicely predicts the experimentally determined energy level spacings. In the S1(pi,pi*) state coumaran is quasiplanar with a barrier to planarity of 34 cm(-1) and with energy minima at puckering angles of +/-14 degrees. The corresponding ground state (S0) values are 154 cm(-1) and +/-25 degrees . As is the case with the related molecules indan, phthalan, and 1,3-benzodioxole, the angle strain in the five-membered ring increases upon the pi-->pi* transition within the benzene ring and this increases the rigidity of the attached ring. Theoretical calculations predict the expected increases of the carbon-carbon bond lengths of the benzene ring in S1, and they predict a barrier of 21 cm(-1) for this state. The bond length increases at the bridgehead carbon-carbon bond upon electron excitation to the S1(pi,pi*) state give rise to angle changes which result in greater angle strain and a nearly planar molecule.  相似文献   

11.
Emission and excitation spectra of 3- and 4-pyridinecarboxaldehyde vapors have been measured at different pressures down to 10(-2)Torr. The phosphorescence quantum yield measured at low pressure as a function of excitation energy is nearly constant in the range of excitation energy corresponding to the S1(n, pi*) state, but it decreases abruptly at the S2(pi, pi*) threshold. The onset of the abrupt decrease of the yield corresponds to the location of the S2 absorption origin of each molecule, indicating that the nonradiative pathway depends on the type of the excited singlet state to which the molecule is initially excited. The relaxation processes are discussed based on the pressure and excitation-energy dependence of the phosphorescence quantum yield.  相似文献   

12.
Intramolecular processes of deactivation of 1,3-dimethyl-4-thiouracil (DMTU) from the second excited singlet (S2) (pi, pi*) and the lowest excited triplet (T1) (pi, pi*) states have been studied using perfluoro-1,3-dimethylcyclohexane (PFDMCH) as a solvent. The spectral and photophysical (PP) properties of DMTU in CCl4, hexane and water have also been described. For the first time, the fluorescence from S2 state DMTU has been observed. The picosecond lifetime of DMTU in the S2 state (tau(S2)) in PFDMCH has been proposed to be determined by a very fast intramolecular reversible process of hydrogen abstraction from the ortho methyl group by the thiocarbonyl group. The shortening of tau(S2) in CCl4 is interpreted to be caused by the intermolecular interactions between DMTU (S2) and the solvent. Results of the phosphorescence decay as a function of DMTU concentration were analyzed using the Stern-Volmer formalism, which enabled determination of the intrinsic lifetime of the T1 state (tau0(T1)) and rate constants of self-quenching (k(sq)). The lifetimes, tau0(T1), of DMTU in PFDMCH and CCl4 are much longer than the values hitherto obtained in more reactive solvents. The PP properties of DMTU both in the S2 and T1 states have been shown to be determined by the thiocarbonyl group.  相似文献   

13.
Excited state potential energy hypersurfaces of 7H-furo[3,2-g][1]benzopyran-7-one (psoralen) have been explored employing (time-dependent) Kohn-Sham density functional theory. At selected points, we have determined electronic excitation energies and electric dipole (transition) moments utilizing a combined density functional/multireference configuration interaction method. Spin-orbit coupling has been taken into account employing an efficient, non-empirical spin-orbit mean-field Hamiltonian. Franck-Condon factors have been computed for vibrational modes with large displacements in the respective Dushinsky transformations. The simulated band spectra closely resemble experimental band shapes and thus validate the theoretically determined nuclear structures at the S(0), S(1), and T(1) minima. In the S(1) (pi(HOMO)-->pi*(LUMO)) state, the lactone bond of the pyrone ring is significantly elongated. From excited vibrational levels of the S(1) state a conical intersection between a (pi-->sigma*) excited state and the electronic ground state may be energetically accessible. Fast non-radiative decay via this relaxation pathway could explain the low fluorescence quantum yield of psoralen. The T(1) (pi(HOMO-1)-->pi*(LUMO)) exhibits a diradicaloid electronic structure with a broken C(5)-C(6) double bond in the pyrone ring. A variational multireference spin-orbit configuration interaction procedure yields a phosphorescence lifetime of 3 s, in excellent agreement with experimental estimates.  相似文献   

14.
The first time observed excitation spectrum of the C(1)1(5(1)P(1))<--X(1)0+(5(1)S(0)) transition in CdHe van der Waals molecules is reported. Vibrational spectrum in the UV region (2286.0-2296 A) was excited in a continuous molecular-jet-expansion beam of CdHe seeded in helium using an in-house-built nitrogen-dye laser system. The excitation spectrum exhibits two vibrational components (v'<--v'=0) highly broadened by means of unresolved rotational structure and some additional contributions of "hot-bands" components (v'<--v'=1). The last effect is due to an extremely small separation of the vibrational levels in the ground X(1)0+ state of the CdHe molecule, where v'=0 vibrational level is separated from v'=0 by merely 6.0 cm(-1). It follows therefore that even in an extremely cold environment (T(v) approximately 10K) of a jet-expansion beam the population of v'=1 level is feasible, due to some residual collisions, and hence the v'<--v'=1 transitions are highly probable. The assignment of vibrational bands and numerical analysis of the spectrum was based and obtained with the aid of a rigorous computer simulation of the C(1)1<--X(1)0+ transition including the impact of rotational structure and hot-bands contributions. As a result we obtained optical potential parameters of the C(1)1(5(1)P(1)) state of CdHe molecule which are further discussed in terms of our recent (and only existing) experimental results regarding the X(1)0+, B1(5(3)P(1)) and A0+(5(3)P(1)) states of CdHe as well as in terms of ab initio calculations results.  相似文献   

15.
The dynamics of the enolic form of acetylacetone (E-AcAc) was investigated using a femtosecond pump-probe experiment. The pump at 266 nm excited E-AcAc in the first bright state, S2(pi pi*). The resulting dynamics was probed by multiphoton ionization at 800 nm. It was investigated for 80 ps on the S2(pi pi*) and S1(n pi*) potential energy surfaces. An important step is the transfer from S2 to S1 that occurs with a time constant of 1.4 +/- 0.2 ps. Before, the system had left the excitation region in 70 +/- 10 fs. An intermediate step was identified when E-AcAc traveled on the S2 surface. Likely, it corresponds to an accidental resonance in the detection scheme that is met along this path. More importantly, some clues are given that an intramolecular vibrational energy relaxation is observed, which transfers excess vibrational energy from the enolic group O-H to the other modes of the molecule. The present multistep evolution of excited E-AcAc probably also describes, at least qualitatively, the dynamics of other electronically excited beta-diketones.  相似文献   

16.
The ultraviolet absorption spectrum in the range 340-185 nm in the vapour and solution phase has been measured for 2-fluoro-5-bromopyridine. Three fairly intense band systems identified as the pi* <-- pi transitions II, III and IV have been observed. A detailed vibronic analysis of the vapor and solution spectra is presented. The first system of bands is resolved into about sixty-two distinct vibronic bands in the vapour-phase spectrum. The 0,0 band is located at 35944 cm(-1). Two well-developed progressions, in which the excited state frequencies nu'25 (283 cm(-1)) and nu'19 (550 cm(-1)) are excited by several quanta, have been observed. The corresponding excited state vibrational and anharmonicity constants are found to be omega'i = 292 cm(-1), x'ii = 4.5 cm(-1) (i = 25) and omega'i = 563.8 cm(-1), x'ii = 6.9 cm(-1) (i = 19). The other two band systems show no vibronic structure, the band maxima being located at 48346 and 52701 cm(-1), respectively. The oscillator strength of the band systems in different solutions and the excited state dipole moments associated with the first two transitions have been determined by the solvent-shift method. The infrared spectrum in the region 4000-130 cm(-1) and the laser Raman spectrum of the molecule in the liquid state have been measured and a complete vibrational assignment of the observed frequencies is given. A correlation of the ground and excited state fundamental frequencies observed in the UV absorption spectrum with the Raman or infrared frequencies is presented.  相似文献   

17.
The dynamics of the excited states of 1-(p-nitrophenyl)-2-(hydroxymethyl)pyrrolidine (p-NPP) has been investigated using the subpicosecond transient absorption spectroscopic technique in different kinds of solvents. Following photoexcitation using 400 nm light, conformational relaxation via twisting of the nitro group, internal conversion (IC) and the intersystem crossing (ISC) processes have been established to be the three major relaxation pathways responsible for the ultrafast deactivation of the excited singlet (S(1)) state. Although the nitro-twisting process has been observed in all kinds of solvents, the relative probability of the occurrence of the other two processes has been found to be extremely sensitive to solvent polarity, because of alteration of the relative energies of the S(1) and the triplet (T(n)) states. In the solvents of lower polarity, the ISC is predominant over the IC process, because of near isoenergeticity of the S(1)(ππ*) and T(3)(nπ*) states. On the other hand, in the solvents of very large polarity, the energy of the S(1)(ππ*) state becomes lower than those of both the T(3)(nπ*) and T(2)(nπ*/ππ*) states, but those of the T(1)(ππ*) state and the IC process to the ground electronic (S(0)) state are predominant over the ISC, and hence the triplet yield is nearly negligible. However, in the solvents of medium polarity, the S(1) and T(2) states become isoenergetic and the deactivation of the S(1) state is directed to both the IC and ISC channels. In the solvents of low and medium polarity, following the ISC process, the excited states undergo IC, vibrational relaxation, and solvation in the triplet manifold. On the other hand, following the IC process in the Franck-Condon region of the S(0) state, the vibrationally hot molecules with the twisted nitro group subsequently undergo the reverse nitro-twisting process via dissipation of the excess vibrational energy to the solvent or vibrational cooling.  相似文献   

18.
We present experimental data on the electric permanent dipole moments d(v',J') and lambda splittings (q factors) in the quasidegenerate (3) 1pi(e/f) state of the NaCs molecule over a wide range of the vibrational (v') and rotational (J') quantum numbers by using the combination of dc Stark mixing and electric radio frequency-optical double resonance methods. Within the experimental (3) 1pi state v' ranged from v' = 0 to 34, q values exhibited a pronounced decrease from 7.91x10(-6) to 0.47x10(-6) cm(-1), while absolute value(d) values varied between 8.0 and 5.0 D. Experimental evaluation yielded small d values about 1 D for D2 1pi state v' < 3 levels. The experiment is supported by ab initio electronic structure calculations performed for the (1-3) 1pi states of NaCs by means of the many-body multipartitioning perturbation theory of potential energy curves, permanent dipole, and angular coupling matrix elements for the lowest singlet states. The predicted d values reproduce their experimental counterparts within the measurement errors while theoretical q factors reproduce the measured v' dependence being, however, systematically overestimated by ca. 1x10(-6) cm(-1). The present NaCs data are compared with those of the NaK and NaRb molecules.  相似文献   

19.
The photophysical properties of a group of Ni(II)-centered tetrapyrroles have been investigated by ultrafast transient absorption spectrometry and DFT/TDDFT methods in order to characterize the impacts of alpha-octabutoxy substitution and benzoannulation on the deactivation pathways of the S1(pi,pi*) state. The compounds examined were NiPc, NiNc, NiPc(OBu)8, and NiNc(OBu)8, where Pc = phthalocyanine and Nc = naphthalocyanine. It was found that the S1(pi,pi*) state of NiNc(OBu)8 deactivated within the time resolution of the instrument (200 fs) to a vibrationally hot T1(pi,pi*) state. The quasidegeneracy of the S1(pi,pi*) and 3(dz2,dx2-y2) states allowed for fast intersystem crossing (ISC) to occur. After vibrational relaxation (ca. 2.5 ps), the T1(pi,pi*) converted rapidly (ca. 19 ps lifetime) and reversibly into the 3LMCT(pi,dx2-y2) state. The equilibrium state, so generated, decayed to the ground state with a lifetime of ca. 500 ps. Peripheral substitution of the Pc ring significantly modified the photodeactivation mechanism of the S1(pi,pi*) by inducing substantial changes in the relative energies of the S1(pi,pi*), 3(dpi,dx2-y2), 3(dz2,dx2-y2), T1(pi,pi*), and 1,3LMCT(pi,dx2-y2) excited states. The location of the Gouterman LUMOs and the unoccupied metal level (dx2-y2) with respect to the HOMO is crucial for the actual position of these states. In NiPc, the S1(pi,pi*) state underwent ultrafast (200 fs) ISC into a hot (d,d) state. Vibrational cooling (ca. 20 ps lifetime) resulted in a cold (dz2,dx2-y2) state, which repopulated the ground state with a 300 ps lifetime. In NiPc(OBu)8, the S1(pi,pi*) state deactivated through the 3(dz2,dx2-y2), which in turn converted to the 3LMCT(pi,dx2-y2) state, which finally repopulated the ground state with a lifetime of 640 ps. Insufficient solubility of NiNc in noncoordinating solvents prevented transient absorption data from being obtained for this compound. However, the TDDFT calculations were used to make speculations about the photoproperties.  相似文献   

20.
The electronic structure of BeAl was investigated by laser induced fluorescence and resonance enhanced multiphoton ionization spectroscopy. BeAl was formed by pulsed laser ablation of a Be/Al alloy in the presence of helium carrier gas, followed by a free jet expansion into vacuum. In agreement with recent ab initio studies, the molecule was found to have a (2)Pi(1/2) ground state. Transitions to two low lying electronic states, (2)(2)Pi(1/2)(v') <-- X (2)Pi(1/2) (v' = 0) and (1)(2)Delta(v') <-- X (2)Pi(1/2) (v' = 0,1), were observed and rotationally analyzed. An additional band system, identified as (4)(2)Sigma(+)(v') <-- X (2)Pi(1/2), was found in the 28 000-30 100 cm(-1) energy range. This transition exhibited an unusual pattern of vibrational levels resulting from an avoided crossing with the (5)(2)Sigma(+) electronic state. New multi-reference configuration interaction calculations were carried out to facilitate the interpretation of the UV bands.An ionization energy of 48 124(80) cm(-1) was determined for BeAl from photoionization efficiency (PIE) measurements. Fine structure in the PIE curve was attributed to resonances with Rydberg series correlating with vibrationally excited states of the BeAl(+) ion. Analysis of this structure yielded a vibrational frequency of 240(20) cm(-1) for the cation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号