首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
针对电子耳蜗音调信息感知差的问题,在多导电子耳蜗机理模型的基础上,利用零(或全)相位滤波器以及希尔伯特变换,提取并分解16个通道信号的包络和精细结构,用多种方式嵌合成声音,对正常人耳测听合成音的音调信息,以确定信号的包络和精细结构对音调感知的影响。测试结果表明:精细结构相对包络对音调感知起着更重要的作用,且该作用主要表现在低频段(约1.2 kHz以内)通道上。研究发现,在固定通道上,精细结构与通道中心频率和相位信息决定的包络出现时刻对应,其音调感知与低通道电极刺激的脉冲发放时间有关。研究结论:在低频段电极上增加刺激脉冲发放时刻的控制对提高电子耳蜗音调感知是重要的,同时应注意滤波器的相位保真。   相似文献   

2.
耳蜗植入表明用电刺激听觉神经可以使全聋人恢复一些听感。以前的植入器仅能给病人以初步听觉能力,用于一般声知觉和片段语言提示。用新的多电极植入器取得的结果表明,某些病人仅按植入器通入的声音就能完成高级语言识别。 单电极耳蜗植入器将处理后的声波波形送给放置在耳蜗或圆窗凹处的电极,这种植入器对受刺激的神经没有空间选择性,即出现所有神经细胞同时激励的情况。使用单电极时,病  相似文献   

3.
正听觉让我们可以进行言语交流、音乐欣赏、感受环境等声音感知活动。在正常的听觉通路中,声音的机械振动主要通过耳廓、耳道、鼓膜和听骨链的传导进入耳蜗,振动信号在耳蜗中被转换为神经电信号,电信号被听觉神经系统逐渐上传至中枢,经处理形成听觉。当听觉通路受到破坏时,听觉功能就会产生损伤。大多数听力受损者的听觉通路是在机械振动传导环节出了问题,他们可以通过佩戴助听器来获得声学放大,进而得到听力补偿。然而,对于很多重度以上感  相似文献   

4.
平利川  原猛  冯海泓 《声学学报》2012,37(3):324-329
系统地分析与探讨频域分辨率及时域包络周期性对不同音色及频率覆盖范围的音乐音高分辨的影响。选择钢琴、小提琴、小号及单簧管四种乐器的乐音和特定的复合音作为测试音源。利用噪声调制的声码器模型调控音乐信号的频域分辨率和时域包络周期性。十位正常听力者参与了该项音高分辨测试。实验结果表明,随着频域分辨率的提高,受试者对音高分辨的准确率呈上升趋势,16个频带已可获得较好的音高分辨效果;当时域包络周期性信息增加时,未见其对音高分辨产生一致性积极影响。   相似文献   

5.
由于传统谱减语音增强存在残留的"音乐噪声",因此基于传统谱减法降噪的电子耳蜗(CI)感知的声音品质也会受到影响.为提高CI的抗噪性,本文提出了一种自适应变阶谱减算法,并将该方法应用于电子耳蜗的语音增强中.根据CI电极对应的频带关系,该算法先对采集的带噪声音信号功率谱进行Bark子带划分,并在每个Bark子带中根据信噪比的变化进行谱减阶数和系数的自适应调节,使各子带噪声更均衡地去除,基本消除了传统方法存在的"音乐噪声".基于该算法的电子耳蜗ACE仿真实验及测听结果表明,与传统谱减法相比,改进的算法能更好地抑制背景噪声和残留噪声,仿真得到的CI合成音感知更好和更清晰.  相似文献   

6.
刘金麟 《应用声学》2015,34(2):182-182
耳蜗是人类听觉系统的重要器官,其基底膜对声音信号具有很强的选择性。Helmholtz认为,附着在耳蜗基底膜上的纤维可以完成对声音信号的感知:靠近耳蜗底部处对高频声音较为敏感,而靠近耳蜗顶部处则对低频部分较为敏感,这个理论被科学家们称为"Place Theory"。传统的仿生声学超常材料和声学功能器件的设计,利用耳蜗的这种结构特性进行简化改进,但设计结构参数复杂,不易控制。近期,西安交通大学的学者基于哺乳动物耳蜗原型  相似文献   

7.
对14位正常听力者开展了环境声的人工耳蜗仿真声识别实验,比较了两类声码器仿真(正弦载波和噪声载波)条件下的环境声识别效果差异,然后对9位讲普通话的成年人工耳蜗植入者开展了环境声识别实验。实验材料是从互联网上搜集,并经过12位正常听力者主观测试验证后,筛选出的67种环境声。结果显示,载波类型没有对67种环境声的平均识别效果产生显著影响,但是声学特征的差异会导致单个环境声的识别效果对载波类型有依赖。另外,人工耳蜗植入者的环境声识别效果较差,有待通过信号处理策略、神经接口和康复手段的改进而得到提高。本研究中开发的环境声材料可以用于评估人工耳蜗环境声识别效果。   相似文献   

8.
齐士钤 《应用声学》1989,8(4):48-48
由中国声学学会语言、听觉和音乐声学分科学会,中国电子学会信号处理学会语言图像通信专业委员会,ASSP北京分部联合主办的“语言、图像、通讯、信号处理学术会议”,拟在1989年11月左右在北京召开。本学术会议的论文内容包括:语言分析与合成,语言识别,语言感知,语言编码,语言增强,听觉和听力学,音乐声学;图像和图形处理,图像识别,图像压缩编码,图像增强,文字编码,文字识别;通讯中的信号处  相似文献   

9.
赵志军  谢凌云 《声学学报》2013,38(5):624-631
视听交互的重要性日益突出,但视觉刺激对听觉感知的影响尚缺乏全面深入的研究。以视觉刺激下人耳对声音的主观听感差别阈限变化为研究对象,在主观听觉实验中施加颜色、质量、亮度、运动状态四个不同属性视觉刺激,同时测量纯音信号的响度、主观音长和音高的听感差别阈限。通过与无视觉刺激下相应差别阈限的比较,分析不同视觉条件对响度感知、主观音长感知、音高感知能力的影响。实验数据显示,施加视觉刺激后主观听觉感知的差别阈限值增大,主观音长、音高和响度的差别阈限值平均分别提高了45.1%,14.8%和12.3%。进一步分析的结果表明,施加视觉刺激后基本的听觉感知能力呈下降趋势。同一视觉属性的不同水平视觉条件对听觉感知的影响程度不同,主观听感的变化呈现出一定的规律性,即视觉刺激越舒适,听感的差别阈限变化越小。   相似文献   

10.
特征提取是水下无源声呐目标分类识别的关键步骤,提出了一种基于听觉Patterson-Holdsworth耳蜗模型的听觉域张量特征提取方法。将耳蜗模型的滤波器冲激响应视为信号分解的基函数,根据听觉模型非线性尺度或常规线性尺度确定不同通道的中心频率,然后计算出相应通道的增益和带宽,并量化冲激响应的阶数和相位参数,得到信号分解基,再根据信号分解原理得到通道数×阶数×相位数的三阶张量特征,并通过计算测试样本张量特征与训练样本张量特征间的相似性实现了水下无源声呐目标的分类识别。海上实录无源声呐目标的分类识别实验表明,提取的张量特征具有比较好的分类识别性能,听觉模型等效矩形带宽尺度优于线性尺度划分中心频率,能够提高无源声呐的目标指示能力。   相似文献   

11.
The main goal of this study was to systematically investigate place-pitch perception in electrical hearing and the relative relationship between place-pitch perception ability,speech understanding and musical pitch discrimination by cochlear implant(CI) users.Electrode pitch ranking test was carried out to evaluate the place-pitch perception ability of CI users. Four post-lingually deafened CI users were recruited.They also participated in the speech recognition test and musical pitch discrimination test.Results showed that place pitch were generally ordered from apical to basal electrodes.The apical electrodes were judged lower in pitch than basal electrodes.Large individual difference was found.Comparing pitch and speech performance,the speech recognition result was related to the place-pitch perception ability of CI users,but this relationship was limited by the ceiling effects.However,a correlative relationship was found between musical pitch discrimination result and place-pitch ability of CI users.It indicated that the current signal processing of CI system can provide sufficient information for speech understanding but not for music perception of CI users.To a certain extent,music perception of CI users was determined by their place-pitch abilities.  相似文献   

12.
Cochlear implant subjects continue to experience difficulty understanding speech in noise and performing pitch-based musical tasks. Acoustic model studies have suggested that transmitting additional fine structure via multiple stimulation rates is a potential mechanism for addressing these issues [Nie et al., IEEE Trans. Biomed. Eng. 52, 64-73 (2005); Throckmorton et al., Hear. Res. 218, 30-42 (2006)]; however, results from preliminary cochlear implant studies have been less compelling. Multirate speech processing algorithms previously assumed a place-dependent pitch structure in that a basal electrode would always elicit a higher pitch percept than an apical electrode, independent of stimulation rate. Some subjective evidence contradicts this assumption [H. J. McDermott and C. M. McKay, J. Acoust. Soc. Am. 101, 1622-1630 (1997); R. V. Shannon, Hear. Res. 11, 157-189 (1983)]. The purpose of this study is to test the hypothesis that the introduction of multiple rates may invalidate the tonotopic pitch structure resulting from place-pitch alone. The SPEAR3 developmental speech processor was used to collect psychophysical data from five cochlear implant users to assess the tonotopic structure for stimuli presented at two rates on all active electrodes. Pitch ranking data indicated many cases where pitch percepts overlapped across electrodes and rates. Thus, the results from this study suggest that pitch-based tuning across rate and electrode may be necessary to optimize performance of a multirate sound processing strategy in cochlear implant subjects.  相似文献   

13.
Congenital amusia is a lifelong disorder of music processing that has been ascribed to impaired pitch perception and memory. The present study tested a large group of amusics (n=17) and provided evidence that their pitch deficit affects pitch processing in speech to a lesser extent: Fine-grained pitch discrimination was better in spoken syllables than in acoustically matched tones. Unlike amusics, control participants performed fine-grained pitch discrimination better for musical material than for verbal material. These findings suggest that pitch extraction can be influenced by the nature of the material (music vs speech), and that amusics' pitch deficit is not restricted to musical material, but extends to segmented speech events.  相似文献   

14.
Two related studies investigated the relationship between place-pitch sensitivity and consonant recognition in cochlear implant listeners using the Nucleus MPEAK and SPEAK speech processing strategies. Average place-pitch sensitivity across the electrode array was evaluated as a function of electrode separation, using a psychophysical electrode pitch-ranking task. Consonant recognition was assessed by analyzing error matrices obtained with a standard consonant confusion procedure to obtain relative transmitted information (RTI) measures for three features: stimulus (RTI stim), envelope (RTI env[plc]), and place-of-articulation (RTI plc[env]). The first experiment evaluated consonant recognition performance with MPEAK and SPEAK in the same subjects. Subjects were experienced users of the MPEAK strategy who used the SPEAK strategy on a daily basis for one month and were tested with both processors. It was hypothesized that subjects with good place-pitch sensitivity would demonstrate better consonant place-cue perception with SPEAK than with MPEAK, by virtue of their ability to make use of SPEAK's enhanced representation of spectral speech cues. Surprisingly, all but one subject demonstrated poor consonant place-cue performance with both MPEAK and SPEAK even though most subjects demonstrated good or excellent place-pitch sensitivity. Consistent with this, no systematic relationship between place-pitch sensitivity and consonant place-cue performance was observed. Subjects' poor place-cue perception with SPEAK was subsequently attributed to the relatively short period of experience that they were given with the SPEAK strategy. The second study reexamined the relationship between place-pitch sensitivity and consonant recognition in a group of experienced SPEAK users. For these subjects, a positive relationship was observed between place-pitch sensitivity and consonant place-cue performance, supporting the hypothesis that good place-pitch sensitivity facilitates subjects' use of spectral cues to consonant identity. A strong, linear relationship was also observed between measures of envelope- and place-cue extraction, with place-cue performance increasing as a constant proportion (approximately 0.8) of envelope-cue performance. To the extent that the envelope-cue measure reflects subjects' abilities to resolve amplitude fluctuations in the speech envelope, this finding suggests that both envelope- and place-cue perception depend strongly on subjects' envelope-processing abilities. Related to this, the data suggest that good place-cue perception depends both on envelope-processing abilities and place-pitch sensitivity, and that either factor may limit place-cue perception in a given cochlear implant listener. Data from both experiments indicate that subjects with small electric dynamic ranges (< 8 dB for 125-Hz, 205-microsecond/ph pulse trains) are more likely to demonstrate poor electrode pitch-ranking skills and poor consonant recognition performance than subjects with larger electric dynamic ranges.  相似文献   

15.
This study investigated the integration of place- and temporal-pitch cues in pitch contour identification (PCI), in which cochlear implant (CI) users were asked to judge the overall pitch-change direction of stimuli. Falling and rising pitch contours were created either by continuously steering current between adjacent electrodes (place pitch), by continuously changing amplitude modulation (AM) frequency (temporal pitch), or both. The percentage of rising responses was recorded as a function of current steering or AM frequency change, with single or combined pitch cues. A significant correlation was found between subjects' sensitivity to current steering and AM frequency change. The integration of place- and temporal-pitch cues was most effective when the two cues were similarly discriminable in isolation. Adding the other (place or temporal) pitch cues shifted the temporal- or place-pitch psychometric functions horizontally without changing the slopes. PCI was significantly better with consistent place- and temporal-pitch cues than with inconsistent cues. PCI with single cues and integration of pitch cues were similar on different electrodes. The results suggest that CI users effectively integrate place- and temporal-pitch cues in relative pitch perception tasks. Current steering and AM frequency change should be coordinated to better transmit dynamic pitch information to CI users.  相似文献   

16.
The ability to discriminate pitch changes (or intervals) is foundational for speech and music. In an auditory psychophysical experiment, musicians and non-musicians were tested with fixed- and roving-pitch discrimination tasks to investigate the effects of musical expertise on interval discrimination. The tasks were administered parametrically to assess performance across varying pitch distances between intervals. Both groups showed improvements in fixed-pitch interval discrimination as a function of increasing interval difference. Only musicians showed better roving-pitch interval discrimination as interval differences increased, suggesting that this task was too demanding for non-musicians. Musicians had better interval discrimination than non-musicians across most interval differences in both tasks. Interestingly, musicians exhibited improved interval discrimination starting at interval differences of 100 cents (a semitone in Western music), whereas non-musicians showed enhanced discrimination at interval differences exceeding 125 cents. Although exposure to Western music and speech may help establish a basic interval-discrimination threshold between 100 and 200 cents (intervals that occur often in Western languages and music), musical training presumably enhances auditory processing and reduces this threshold to a semitone. As musical expertise does not decrease this threshold beyond 100 cents, the semitone may represent a musical training-induced intervallic limit to acoustic processing.  相似文献   

17.
Simultaneous or near-simultaneous activation of adjacent cochlear implant electrodes can produce pitch percepts intermediate to those produced by each electrode separately, thereby increasing the number of place-pitch steps available to cochlear implant listeners. To estimate how many distinct pitches could be generated with simultaneous dual-electrode stimulation, the present study measured place-pitch discrimination thresholds for single- versus dual-electrode stimuli in users of the Clarion CII device. Discrimination thresholds were expressed as the proportion of current directed to the secondary electrode of the dual-electrode pair. For 16 of 17 electrode pairs tested in six subjects, thresholds ranged from 0.11 to 0.64, suggesting that dual-electrode stimuli can produce 2-9 discriminable pitches between the pitches of single electrodes. Some subjects demonstrated a level effect, with better place-pitch discrimination at higher stimulus levels. Equal loudness was achieved with dual-electrode stimuli at net current levels that were similar to or slightly higher than those for single-electrode stimuli.  相似文献   

18.
This study explored the relationship between music and speech by examining absolute pitch and lexical tone perception. Taiwanese-speaking musicians were asked to identify musical tones without a reference pitch and multispeaker Taiwanese level tones without acoustic cues typically present for speaker normalization. The results showed that a high percentage of the participants (65% with an exact match required and 81% with one-semitone errors allowed) possessed absolute pitch, as measured by the musical tone identification task. A negative correlation was found between occurrence of absolute pitch and age of onset of musical training, suggesting that the acquisition of absolute pitch resembles the acquisition of speech. The participants were able to identify multispeaker Taiwanese level tones with above-chance accuracy, even though the acoustic cues typically present for speaker normalization were not available in the stimuli. No correlations were found between the performance in musical tone identification and the performance in Taiwanese tone identification. Potential reasons for the lack of association between the two tasks are discussed.  相似文献   

19.
Standard continuous interleaved sampling processing, and a modified processing strategy designed to enhance temporal cues to voice pitch, were compared on tests of intonation perception, and vowel perception, both in implant users and in acoustic simulations. In standard processing, 400 Hz low-pass envelopes modulated either pulse trains (implant users) or noise carriers (simulations). In the modified strategy, slow-rate envelope modulations, which convey dynamic spectral variation crucial for speech understanding, were extracted by low-pass filtering (32 Hz). In addition, during voiced speech, higher-rate temporal modulation in each channel was provided by 100% amplitude-modulation by a sawtooth-like wave form whose periodicity followed the fundamental frequency (F0) of the input. Channel levels were determined by the product of the lower- and higher-rate modulation components. Both in acoustic simulations and in implant users, the ability to use intonation information to identify sentences as question or statement was significantly better with modified processing. However, while there was no difference in vowel recognition in the acoustic simulation, implant users performed worse with modified processing both in vowel recognition and in formant frequency discrimination. It appears that, while enhancing pitch perception, modified processing harmed the transmission of spectral information.  相似文献   

20.
Pitch intervals are central to most musical systems, which utilize pitch at the expense of other acoustic dimensions. It seemed plausible that pitch might uniquely permit precise perception of the interval separating two sounds, as this could help explain its importance in music. To explore this notion, a simple discrimination task was used to measure the precision of interval perception for the auditory dimensions of pitch, brightness, and loudness. Interval thresholds were then expressed in units of just-noticeable differences for each dimension, to enable comparison across dimensions. Contrary to expectation, when expressed in these common units, interval acuity was actually worse for pitch than for loudness or brightness. This likely indicates that the perceptual dimension of pitch is unusual not for interval perception per se, but rather for the basic frequency resolution it supports. The ubiquity of pitch in music may be due in part to this fine-grained basic resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号