首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposing [Bi(OR)3(toluene)]2 (1, R = OC6F5) to different solvents leads to the formation of larger polymetallic bismuth oxo alkoxides via ether elimination/oligomerization reactions. Three different compounds were obtained depending upon the conditions: Bi4(mu 4-O)(mu-OR)6(mu 3-OBi(mu-OR)3)2(C6H5CH3) (2), Bi8(mu 4-O)2(mu 3-O)2(mu 2-OR)16 (3), Bi6(mu 3-O)4(mu 3-OR)(mu 3-OBi(OR)4)3 (4). Compounds 2 and 3 can also be synthesized via an alcoholysis reaction between BiPh3 and ROH in refluxing dichloromethane or chloroform. Related oxo complexes NaBi4(mu 3-O)2(OR)9(THF)2 (5) and Na2Bi4(mu 3-O)2(OR)10(THF)2 (6) were obtained from BiCl3 and NaOR in THF. The synthesis of 1 and Bi(OC6Cl5)3 via salt elimination was successful when performed in toluene as solvent. For compounds 2-6 the single-crystal X-ray structures were determined. Variable-temperature NMR spectra are reported for 2, 3, and 5.  相似文献   

2.
Reaction of Mn(ClO4)2 with di-pyridyl ketone oxime, (2-py)2C=NOH, gives the novel cluster [Mn(II)4Mn(III)6Mn(IV)2(mu4-O)2(mu3-O)4(mu3-OH)4(mu3-OCH3)2(pko)12](OH)(ClO4)3 1. It is the only example of a 24-MC-8, and the first metallacrown with ring metal ions in three different oxidation states. Magnetic measurements show antiferromagnetic behavior.  相似文献   

3.
4.
Mechanochemical reaction of cluster coordination polymers 1infinity[M3Q7Br4] (M = Mo, W; Q = S, Se) with solid K2C2O4 leads to cluster core excision with the formation of anionic complexes [M3Q7(C2O4)3]2-. Extraction of the reaction mixture with water followed by crystallization gives crystalline K2[M3Q7(C2O4)3].0.5KBr.nH2O (M = Mo, Q = S, n = 3 (1); M = Mo, Q = Se, n = 4 (2); M = W, Q = S, n = 5 (3)). Cs2[Mo3S7(C2O4)3].0.5CsCl.3.5H2O (4) and (Et4N)1.5H0.5K{[Mo3S7(C2O4)3]Br}.2H2O (5) were also prepared. Close Q...Br contacts result in the formation of ionic triples {[M3Q7(C2O4)3](2)Br}5- in 1-4 and the 1:1 adduct {[Mo3S7(C2O4)3]Br}3- in 5. Treatment of 1 or 2 with PPh(3) leads to chalcogen abstraction with the formation of [Mo3(mu3-Q)(mu2-Q)3(C2O4)3(H2O)3]2-, isolated as (Ph4P)2[Mo3(mu3-S)(mu2-S)3(C2O4)3(H2O)3].11H2O (6) and (Ph4P2[Mo3(mu3-Se)(mu2-Se)3(C2O4)3(H2O)3].8.5H2O.0.5C2H5OH (7). All compounds were characterized by X-ray structure analysis. IR, Raman, electronic, and 77Se NMR spectra are also reported. Thermal decomposition of 1-3 was studied by thermogravimetry.  相似文献   

5.
The reaction of copper(I) iodide with tri-m-tolylphosphine (m-tolyl(3)P) in acetonitrile yielded the cluster [Cu(6)(mu2-I)(mu3-I)4(mu4-I)(m-tolyl(3)P)4(CH(3)CN)2] (1), with a bicapped adamantoid geometry. In this compound, four Cu atoms are coordinated to four terminally bonded m-tolyl(3)P ligands, two Cu atoms are bonded to two CH(3)CN ligands, and iodide ligands have mu2-I, mu3-I, and mu4-I bonding modes. This compound has four CuI(3)P and two CuI(3)N cores, and geometry around each Cu center is distorted tetrahedral.The polarizable iodide ligand and the position of the methyl group in the phenyl ring attached to the P atom appear to have played the pivotal role in the formation of monomeric bicapped adamantoid geometry, which is unique in copper chemistry.  相似文献   

6.
The nine-membered [-Cu(II)-N-N-](3) ring of trimeric copper-pyrazolato complexes provides a sturdy framework on which water is twice deprotonated in consecutive steps, forming mu(3)-OH and mu(3)-O species. In the presence of excess chlorides the mu(3)-O(H) ligand is replaced by two mu(3)-Cl ions. The interconversion of mu(3)-OH and mu(3)-O and the exchange of mu(3)-O(H) and mu(3)-Cl are reversible, and the three species involved have been structurally characterized: [PPN][Cu(3)(mu(3)-OH)(mu-pz)(3)Cl(3)(thf)].CH(2)Cl(2) (1a), monoclinic P2(1)/n, a = 10.055(2) A, b = 35.428(5) A, c = 15.153(2) A, beta = 93.802(3) degrees, V = 5386(1) A(3), Z = 4; [Bu(4)N][Cu(3)(mu(3)-OH)(mu-pz)(3)Cl(3)] (1b), triclinic P-1, a = 9.135(2) A, b = 13.631(2) A, c = 14.510(2) A, alpha = 67.393(2) degrees, beta = 87.979(2) degrees, gamma = 80.268(3) degrees, V = 1643.2(4) A(3), Z = 2; [PPN](2)[Cu(3)(mu(3)-O)(mu-pz)(3)Cl(3)] (2), monoclinic P2/c, a = 12.807(2) A, b = 13.093(2) A, c = 23.139(4) A, beta = 105.391(3) degrees, V = 3741(1) A(3), Z = 2; [PPN](2)[Cu(3)(mu(3)-Cl)(2)(mu-pz)(3)Cl(3)].0.75H(2)O.0.5CH(2)Cl(2) (3a), triclinic P-1, a = 14.042(2) A, b = 23.978(4) A, c = 25.195(4) A, alpha = 76.796(3) degrees, beta = 79.506(3) degrees, gamma = 77.629(3) degrees, V = 7988(2) A(3), Z = 4; [Bu(4)N](2)[Cu(3)(mu(3)-Cl)(2)(mu-pz)(3)Cl(3)] (3b), monoclinic C2/c, a = 17.220(2) A, b = 15.606(2) A, c = 20.133(2) A, beta = 103.057(2) degrees, V = 5270(1) A(3), Z = 4; [Et(3)NH][Cu(3)(mu(3)-OH)(mu-pz)(3)Cl(3)(pzH)] (4), triclinic P-1, a = 11.498(2) A, b = 11.499(2) A, c = 12.186(2) A, alpha = 66.475(3) degrees, beta = 64.279(3) degrees, gamma = 80.183(3) degrees, V = 1331.0(5) A(3), Z = 2. Magnetic susceptibility measurements show that the three copper centers of 2 are strongly antiferromagnetically coupled with J(Cu-Cu) = -500 cm(-1).  相似文献   

7.
The synthesis, crystal structure, and magnetic properties of two trinuclear oxo-centered carboxylate complexes are reported and discussed: [Cr3(mu3-O)(mu2-PhCOO)6(H2O)3]NO3.4H2O.2CH3OH (1) and [Cr3(mu3-O)(mu2-PhCOO)2(mu2-OCH2CH3)2(bpy)2(NCS)3] (2). For both complexes the crystal system is monoclinic, with space group C2/c for 1 and P1/n for 2. The structure of complex 1 consists of discrete trinuclear cations, associated NO3- anions, and lattice methanol and water molecules. The structure of complex 2 is built only by neutral discrete trinuclear entities. The most important feature of 2 is the unusual skeleton of the [Cr3O] core due to the lack of peripheral bridging ligands along one side of the triangular core, which is unique among the structurally characterized (mu3-oxo)trichromium(III) complexes. Magnetic measurements were performed in the 2-300 K temperature range. For complex 1, in the high-temperature region (T > 8 K), experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -2J12S1S2 - 2J13S1S3 - 2J23S2S3 (J12 = J13 = J23) with Jij = -10.1 cm(-1), g = 1.97, and TIP = 550 x 10(-6) emu mol(-1). The antisymmetric exchange interaction plays an important role in the magnetic behavior of the system, so in order to fit the experimental magnetic data at low temperature, a new magnetic model was used where this kind of interaction was also considered. The resulting fitting parameters are the following: Gzz = 0.25 cm(-1), delta = 2.5 cm(-1), and TIP = 550 x 10(-6) emu mol(-1). For complex 2, the experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -2J1(S1S2 + S1S3) - 2J2(S2S3) with J1 = -7.44 cm(-1), J2 = -51.98 cm(-1), and g = 1.99. The magnetization data allows us to deduce the ground term of S = 1/2, characteristic of equilateral triangular chromium(III) for complex 1 and S = 3/2 for complex 2, which is confirmed by EPR measurements.  相似文献   

8.
Treatment of aluminum nitrate with an organic nitroso-containing compound yields the "flat", tridecameric nanocluster Al 13(mu 3-OH) 6(mu 2-OH) 18(H 2O) 24(NO 3) 15 ( Al 13 ) in good yield on a preparative scale under ambient conditions. Synthetic procedures yielding two different single-crystal forms of the Al 13 cation with two varying counterion compositions are described.  相似文献   

9.
This research constitutes an operational test to assess the influence of platinum-attached phosphine ligands in the formation process of "open-face" TlPt3 or "full" Pt3TlPt3 sandwich clusters. Accordingly, the reaction of TlPF6 with triphenylphosphine Pt4(mu2-CO)5(PPh3)4, under essentially identical boundary conditions originally used to prepare (90% yield) the triethylphosphine "full" Pt3TlPt3 sandwich, [(mu6-Tl)Pt6(mu2-CO)6(PEt3)6]+ (3) ([PF6]- salt), from Pt4(mu2-CO)5(PEt3)4 was carried out to see whether it would likewise afford the unknown triphenylphosphine Pt3TlPt3 sandwich analogue of or whether the change of phosphine ligands from sterically smaller, more basic PEt3 to PPh3 would cause the product to be the corresponding unknown triphenylphosphine "open-face" TlPt3 sandwich that would geometrically resemble the known bulky tricyclohexylphosphine [(mu3-Tl)Pt3(mu2-CO)3(PCy3)3]+ sandwich (2a). Both the structure and composition of the resulting "open-face" sandwich product, [(mu3-Tl)Pt3(mu2-CO)3(PPh3)3]+ (1a) ([PF6]- salt), were unequivocally established from a low-temperature CCD X-ray crystallographic determination. The calculated Pt/Tl atom ratio (3/1) of 75%/25% is in excellent agreement with that of 72(3)%/28(5)% obtained from energy-resolved measurements on a single crystal with a scanning electron microscope. Crystals (80% yield) of the orange-red were characterized by solid-state/solution IR and variable temperature 205Tl and 31P{1H} NMR spectra; the 31P{1H} spectra provide convincing evidence that is exhibiting dynamic behavior at room temperature in CDCl3 solution. The corresponding new "open-face" (mu3-AuPPh3)Pt3 sandwich, [(mu3-AuPPh3)Pt3(mu2-CO)3(PPh3)3]+ (1b) ([PF6]- salt), was quantitatively obtained from by reaction with AuPPh3Cl and spectroscopically characterized by IR and 31P{1H} NMR spectra. A comparative geometrical evaluation of the observed steric dispositions of the platinum-attached PR3 ligands in the "open-face" (mu3-Tl)Pt3 sandwiches of (with PPh3) and the known (with PCy3) and in the known "full" Pt3TlPt3 sandwich of (with PEt3) along with the considerably different observed steric dispositions of the PR(3) ligands in the known "open-face" (mu3-AuPCy3)Pt3 sandwich of (with PCy3) and in the known "full" Pt3AuPt3 sandwich of (with PPh(3)) has been performed. The results clearly indicate that, in contradistinction to the known triphenylphosphine Pt3AuPt3 sandwich of , PPh3 and bulkier PCy3 ligands of Pt3(mu2-CO)3(PR3)3 units are sterically too large to form "full" Pt3TlPt3 sandwiches. In other words, the nature of the thallium(I) sandwich-product in these reactions is sterically controlled by size effects of the phosphine ligands. Comparative examination of bridging carbonyl IR frequencies of and with those of closely related "open-face" and "full" sandwiches provides better insight concerning the relative electrophilic capacities of Tl+, Au+, and [AuPR3]+ components in forming sandwich adducts with Pt3(mu2-CO)3(PR3)3 nucleophiles.  相似文献   

10.
Structural/bonding considerations of two new Pt-Au clusters, [Pt3(AuPPh3)5(mu2-CO)2(CO)2PPh3]+ (1) and [(mu6-Au){Pt3(mu2-CO)3(PMe3)4}2]+ (2) isolated (as chloride salts), revealed: (i) that the heretofore unknown 20-electron Pt-centered Pt2Au5 icosahedral cage fragment (five missing vertices) of is best viewed as a 44-electron triangular Pt3 adduct of a nearly planar 39-electron [Pt3(mu2-CO)2L3]+ (L3 = (CO)2PPh3) and five one-electron donating AuPPh3 ligands; and (ii) that the geometrically distorted trimethylphosphine "full" Pt3AuPt3 sandwich of is the first example of two nucleophilic 44-electron triangular Pt3(mu2-CO)3L4 (3 : 3 : 4) units (L = PMe3) which asymmetrically encapsulate a central electrophilic Au(I).  相似文献   

11.
The reaction of aqueous [W3S7(C2O4)3](2-) with Ln(3+) and Th(4+) in a 1:1 molar ratio leads to oxalate-bridged heteropolynuclear molecular complexes and coordination polymers. La(3+) and Ce(3+) give a layered structure with big (about 1.8 nm) honeycomb pores which are filled with water molecules and lanthanide ions, in {[Ln(H2O)6]3[W3S7(C2O4)3]4}Br x xH2O (Ia and Ib). The smaller Pr(3+), Nd(3+), Sm(3+), Eu(3+), and Gd(3+) ions give discrete nanomolecules [(W3S7(C2O4)3Ln(H2O)5)2(mu-C2O4)] (with a separation of about 3.2 nm between the most distant parts of the molecule), which are further united into zigzag chains by specific S2...Br- contacts to achieve the overall stoichiometry K[(W3S7(C2O4)3Ln(H2O)5)2(mu-C2O4)]Br.xH2O (IIa-IId). Th(4+) gives K2[(W3S7(C2O4)3)4Th2(OH)2(H2O)10] x 14.33H2O (III) with a nanosized discrete anion (with a separation of about 2.7 nm between the most distant parts of the molecule), in which two thorium atoms are bound via two hydroxide groups into the Th2(OH)2(6+) unit, and each Th is further coordinated by five water molecules and two monodentate [W3S7(C2O4)](2-) cluster ligands. All compounds were characterized by X-ray structure analysis and IR spectroscopy. Magnetic susceptibility measurements in the temperature range of 2-300 K show weak antiferromagnetic interactions between two lanthanides atoms for compounds IIa, IIb, and IId. The thermal decomposition of Ia, Ib, and IIb was studied by thermogravimetry.  相似文献   

12.
By treatment of Zn-reduced ethanolic solutions of NbCl5 with HCl in the presence of sulfide followed by cation-exchange chromatography, two oxo-sulfido niobium aqua ions, the red [Nb4(mu4-S)(mu2-O)5(H2O)10]4+ and the yellow-brown [Nb5(mu3-S)2(mu3-O)2(mu2-O)2(H2O)14]8+, were isolated. Both readily form their respective thiocyanate complexes, for which the structure for the former has been previously reported. Brown crystals of (Me2NH2)6[Nb5S2O4(NCS)14].3.5H2O (1) were isolated in the case of the latter, and the structure was determined by X-ray crystallography (space group: a = 15.4018(5) A, b = 21.1932(8) A, c = 22.0487(8) A, alpha=gamma = 90 degrees , beta = 103.4590(10) degrees , and R(1) = 0.0659). An unprecedented pentanuclear Nb5S2O48+ core is revealed in which short Nb-Nb distances (2.7995(8)-2.9111(8) A) are consistent with metal-metal bonding. A stopped-flow kinetic study of the 1:1 equilibration of NCS- with [Nb4(mu4-S)(mu2-O)5(H2O)10]4+ has been carried out. Equilibration rate constants are independent of [H(+)] in the range investigated (0.5-2.0 M) and at 25 degrees C; kf= 9.5 M(-1) s(-1), kaq = 2.6 x 10(-2) s(-1), and K = 365 M1). Conditions with first NCS- and then [Nb4(mu4-S)(mu2-O)5(H2O)10]4+ in excess revealed a statistical factor of 4, suggesting the presence of four kinetically equivalent Nb atoms. Attempts to study the 1:1 substitution of NCS- with [Nb5(mu3-S)2(mu3-O)2(mu2-O)2(H2O)14]8+ showed signs of saturation kinetics. Quantum chemical calculations using the density functional theory (DFT) approach were performed on both the Nb4O5S4+ and Nb5O4S28+ naked clusters. The highest occupied and lowest unoccupied molecular orbitals have dominant Nb(4d) character. The HOMO for Nb4O5S4+ is a nondegenerate fully filled MO, whereas for Nb5O4S28+, it is a nondegenerate partially filled MO with one unpaired electron. EPR spectroscopy on [Nb5(mu3-S)2(mu3-O)2(mu2-O)2(H2O)14]8+ shows that the molecule has total anisotropy (C2v), with all three tensors, gx= 2.399, gy= 1.975, and gz= 1.531, resolved. No hyperfine interaction expected from the nuclear moment of I = 9/2 for 93Nb was observed.  相似文献   

13.
An ionic heterometallic species [Y(DMF)(8)][Cu(4)(micro(3)-I)(2)(micro-I)(3)I(2)](1) was isolated from a solution of CuI, NH(4)I and YI(3)(Pr(i)OH)(4) in DMF-isopropoxyethanol, and was converted in a confined environment by progressive substitution of the DMF ligands with water molecules first into a 1D zig-zag structure [Y(DMF)(6)(H(2)O)(2)][Cu(7)(micro(4)-I)(3)(micro(3)-I)(2)(micro-I)(4)(I)](1infinity)(2) and finally into a 2D sheet [Y(DMF)(6)(H(2)O)(3)][Cu(I)(7)Cu(II)(2)(micro(3)-I)(8)(micro-I)(6)](2infinity)(3) by H-bond templating.  相似文献   

14.
The reactions of [M3(CO)12] (M=Ru or Fe) with 1,2 bis[(diphenylphosphino)methyl]benzene diselenide (dpmbSe2) in hot toluene afford a variety of phosphine-substituted selenido carbonyl clusters. They belong to the following three families: (i) 50-electron clusters with a M3Se2 core (2, 3, 5-7), (ii) 48-electron clusters with a M3Se core (1, 8), (iii) 34-electron clusters with a M2Se2 core (4). All these species derive from the P=Se bond cleavage. Cluster 1, which contains a hydrido, a phosphido, and a carbene ligand, is produced by multiple fragmentation of the diphosphine. This fragmentation appears related to the presence of the selenido ligand on the cluster, as the reaction of [Ru3(CO)12] with dpmb (not selenized) produces only carbonyl substitution by the phosphine to give [Ru3(CO)10(mu-dpmb)] (9). All the clusters synthesized have been characterized by spectroscopic techniques, and in some cases fluxional behavior has been detected in solution by NMR analysis. The structures of 1, 2, and 7-9 have been determined by X-ray diffraction methods.  相似文献   

15.
16.
The synthesis and structure of [{MgCl(thf)2}3(mu3-C3H5)2]2[Mg(C3H5)4], which contains both a cationic cluster Grignard and a tetraorganomagnesiate dianion, are reported.  相似文献   

17.
The structure of [Ni(cyclam)(mu(1,3)-dca)2Cu(mu(1,5)-dca)2], a genuine 3D dicyanamide-bridged bimetallic coordination polymer, is made up of 2D [Cu(mu(1,5)-dca)2]n layers connected by [Ni(cyclam)(mu(1,3)-dca)2] bridging moieties; it exhibits a ferromagnetic exchange interaction between copper(II) and nickel(II) ions through the mu(1,3)-bidentate dicyanamide bridges.  相似文献   

18.
Complexes [Pd(3)(mu(3)-S)(mu(3)-X)(L)(3)] (L = orthometalated imine), obtained by an unusual reaction of mu(2)-OH dimeric complexes and CS(2), are an unprecedented type of asymmetrical bridges between metallatriangles, which force an all-cis arrangement of the three orthometalated ligands relative to the metallatriangle.  相似文献   

19.
20.
Tetranuclear magnesium complexes with chelating alkoxo ligands have been synthesized with the aim of investigating coordinatively unsaturated magnesium sites able to bind TiX4 (X = Cl, OR), of the type necessary for the formation of the active centers in polymerization catalysts. The magnesium compound [Mg4(mu3,eta2-ddbfo)2(mu,eta2-ddbfo)2(mu,eta1-ddbfo)2(eta1-ddbfo)2] x 2CH2Cl2 (1) (ddbfo = 2,3-dihydro-2,2-dimethyl-7-benzofuranoxide) was prepared by the reaction of MgBu2 with ddbfoH in dichloromethane. Complex 1 exists as a centrosymmetric tetranuclear species with two different types of magnesium centers corresponding to octahedral MgO6 and trigonal bipyramidal MgO5 geometry. Compound 1 is monoclinic, space group P2(1/c), with a = 12.053(2) A, b = 13.323(3) A, c = 17.069(3) A, beta = 98.50(3) degrees , and Z = 4. The reaction of 1 with methanol in tetrahydrofuran (THF) gave compound [Mg4(mu3-OMe)2(mu,eta2-ddbfo)2(mu,eta1-ddbfo)2(eta1-ddbfo)2(CH3OH)5] x CH3OH x THF (2). During this reaction one of the two five-coordinate MgO5 centers in 1 is completed by a methanol molecule and becomes octahedral in 2. Species 2 belongs to the P2(1/n) monoclinic space group, with a = 13.323(3) A, b = 20.768(4) A, c = 27.584(6) A, beta = 104.26(3) degrees , and Z = 4. Compound [Mg4(mu3,eta2-thffo)2(mu,zeta2-thffo)2(mu,eta1-thffo)2[mu-OTi(DIPP)3]2] x 2CH2Cl2 (3) is formed as a result of substitution of two thffo (thffo = 2-tetrahydrofurfuroxide) ligands bonded to the five-coordinate magnesium atom in [Mg4(thffo)8] by bulky OTi(DIPP)3 (DIPP = diisopropylphenolate) groups. Crystals of 3 are monoclinic, space group P2(1/n), with a = 17.069(3) A, b = 18.421(4) A, 17.815(4) A, beta = 90.77(3) degrees , and Z = 4. The X-ray crystal structures of complexes 1-3 are discussed in terms of explaining the role of the coordinatively unsaturated magnesium site in chiral catalyst active center formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号