首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of 3-(isonicotinoyl)-2-oxooxazolo[3,2-a]pyridine, C13H8N2O3, (I) is determined by X-ray powder diffraction analysis. Crystals I are orthorhombic, a = 16.610(2) Å, b = 3.853(1) Å, c = 16.431(2) Å, Z = 4, and space group Pna21. The structure is solved by the grid search procedure and refined by the Reitveld method (Rp = 0.086, Rwp = 0.115, Re = 0.030, and χ2 = 11.138). The structure of the product of hydrolysis of compound I, C12H10N2O2, (II) is determined by the single-crystal X-ray diffraction technique. Crystals II are orthorhombic, a = 8.755(4) Å, b = 10.526(17) Å, c = 23.088(6) Å, Z = 8, and space group Pc21b. The structure is solved by the direct method and refined by the full-matrix least-squares procedure to R = 0.0464. A fragment of two fused heterocycles in I is planar. The dihedral angle between the plane of the pyridine ring in the isonicotinoyl fragment and the plane of the bicyclic system is 51.2(2)°. Both exocyclic CO groups that are adjacent to the five-membered fragment contain double bonds. The structures of two crystallographically independent molecules II are almost identical to each other, and the isonicotinoyl fragment is nearly perpendicular to the plane of the pyridone fragment [84.3(1)° and 87.0(1)°].  相似文献   

2.
Five derivatives of curcumin analogue (R = OCH2CH3 (1), R = N(CH3)2 (2), R = 2,4,5-OCH3 (3), R = 2,4,6-OCH3 (4), and R = 3,4,5-OCH3 (5)) were synthesized and characterized by 1H NMR, FT-IR and UV–Vis spectroscopy. The synthesized derivatives were screened for antityrosinase activity, and found that 4 and 5 possess such activity. The crystal structure of 1 was determined by single crystal X-ray diffraction: monoclinic, sp. gr. P21/c, a = 17.5728(15) Å, b = 5.9121(5) Å, c = 19.8269(13) Å, β = 121.155(5)°, Z = 4. The molecule 1 is twisted with the dihedral angle between two phenyl rings being 15.68(10)°. In the crystal packing, the molecules 1 are linked into chains by C?H···π interactions and further stacked by π···π interactions with the centroid–centroid distance of 3.9311(13) Å.  相似文献   

3.
The synthesis and single-crystal X-ray diffraction study of Cs[UO2(SeO4)(OH)] · 1.5H2O (I) and Cs[UO2(SeO4)(OH)] · H2O (II) are performed. Compound I crystallizes in the monoclinic crystal system, a = 7.2142(2) Å, b = 14.4942(4) Å, c = 8.9270(3) Å, β = 112.706(1)°, space group P21/m, Z = 4, and R = 0.0222. Compound II is monoclinic, a = 8.4549(2) Å, b = 11.5358(3) Å, c = 9.5565(2) Å, β = 113.273(1)°, space group P21/c, Z = 4, and R = 0.0219. The main structural units of crystals I and II are [UO2(SeO4)(OH)]? layers which belong to the AT 3 M 2 crystal chemical group of uranyl complexes (A = UO 2 2+ , T 3 = SeO4 2?, and M 2 = OH?). In structure I, johannite-like layers are found. Structure II is a topological isomer of I. The two structures differ in the number of U(VI) atoms bound to the central atom by all bridging ligands.  相似文献   

4.
Bis(acetylacetonato)oxovanadium C10H14O5V (I) and (S)-[2-(N-salicylidene)aminopropionate]oxovanadium monohydrate C10H9NO5V (II) are synthesized. The crystal structures of compounds I and II are determined using single-crystal X-ray diffraction. Crystals of compound I are triclinic, a = 7.4997(19) Å, b = 8.2015(15) Å, c = 11.339(3) Å, α = 91.37(2)°, β = 110.36(2)°, γ = 113.33(2)°, Z = 2, and space group \(P\bar 1\). Crystals of compound II are monoclinic, a = 8.5106(16) Å, b = 7.373(2) Å, c = 9.1941(16) Å, β = 101.88(1)°, Z = 2, and space group P21. The structures of compounds I and II are solved by direct methods and refined to R1 = 0.0382 and 0.0386, respectively. The oxovanadium complexes synthesized are investigated by vibrational spectroscopy.  相似文献   

5.
Six 3-substituted hydrazone derivatives [R = ?OCH3 (1), ?NH2 (2), ?NO2 (3), ?F (4), ?Cl (5), and ?Br (6)] were synthesized by condensation reaction. Their structures were elucidated by 1H NMR, FT-IR and UV-Vis spectroscopy. The synthesized compounds were further evaluated for their α-glucosidase inhibitory activity. Strong activity was found for 1 and 3. The crystal structure of 1 was determined by single crystal X-ray diffraction: a = 6.9743(1) Å, b = 18.3627(3) Å, c = 12.0207(2) Å, β = 96.087(1)o, sp. gr. P21/c, Z = 4. The molecule of 1 is twisted with the dihedral angle between the two phenyl rings being 51.91(4)°. In the crystal packing, the molecules are linked into chains by C–H···π interactions.  相似文献   

6.
The crystal structures of bis{4-bromo-2-[(2-hydroxyethylimino)methyl]phenolato}copper (I) and bis{4-chloro-2-[(2-hydroxyethylimino)methyl]phenolato}copper (II) are determined. Crystals I are monoclinic, space group P21/c, Z = 2, and R = 0.0732 (for all reflections). Crystals II are likewise monoclinic, space group P21/n, Z = 2, and R = 0.1106. In the structures of compounds I and II, the metal atom is situated at the center of symmetry and coordinated by two singly deprotonated bidentate 4-bromo-or 4-chloro-2-[(2-hydroxyethylimino)methylphenol molecules, respectively, through phenol oxygen and azomethine nitrogen atoms, which form a distorted planar square. In the structures of compound II, the coordination polyhedron of the central atom is completed to an elongated tetragonal bipyramid by the amino alcohol oxygen atoms of the adjacent complexes.  相似文献   

7.
A series of chalcone podands with the propenone group in the ortho position of the bridging aryl substituent with respect to the oxyethylene fragment is synthesized. The influence of the preorganization of the chalcone podand molecules in crystals on their ability to participate in topochemical reactions is investigated. From analyzing the X-ray structural data, the highest probability of the solid-state photochemical [2 + 2]cycloaddition is predicted for podands with phenyl substituents and the oxyethylene fragment containing two or three oxygen atoms. The X-ray structural data for the chalcone podand C32H26O4 (3a) are as follows: a = 7.904(9) Å, b = 14.92(2) Å, c = 21.30(3) Å, β = 91.7(1)°, monoclinic system, space group P21/c, Z = 4, V = 2510(5) Å3, ρ = 1.26 g/cm3, and R = 0.046; C34H30O5 (3b): a = 15.738(9) Å, b = 11.889(2) Å, c = 15.0830(15) Å, β = 105.47(14)°, monoclinic system, space group C2/c, Z = 4, V = 2720.0(9) Å3, ρ = 1.266 g/cm3, and R = 0.0418; C32H24N2O8 (4a): a = 17.9416(18) Å, b = 10.9703(8) Å, c = 41.699(2) Å, β = 105.970(11)°, monoclinic system, space group P21/c, Z = 4, V = 2781.4(5) Å3, ρ = 1.348 g/cm3, and R = 0.0426; C36H32N2O10 (4c): a = 7.6286(5)Å, b = 17.9398(10) Å, c = 11.5890(3)Å, β = 95.287(4)°, monoclinic system, space group P21/n, Z = 2, V = 1579.27(14) Å3, ρ = 1.372 g/cm3, and R = 0.0377; and C28H22O6 (5a): a = 15.6032(10) Å, b = 8.1131(5) Å, c = 17.7334(11) Å, β = 91.381(5)°, monoclinic system, space group C2/c, Z = 4, V = 2244.2(2) Å3, ρ = 1.345 g/cm3, and R = 0.0309.  相似文献   

8.
The crystal structures of dimethyl 4-phenylthiosemicarbazidediacetate C13H17N3O4S (I) and its adduct [C8H12O8Rh2 (C13H17N3O4S)2] (II) with rhodium(II) acetate are determined by X-ray diffraction analysis. The unit cell parameters of crystals I are as follows: a = 8.066(6) Å, b = 15.812(6) Å, c = 24.977(8) Å, β = 94.88(3)°, space group P21/n, and Z = 8. The unit cell parameters of crystals II are a = 8.513(1) Å, b = 16.055(1) Å, c = 16.071(3) Å, β = 104.99(1)°, space group P21/c, and Z = 2. In structure I, two crystallographically independent molecules considerably differ from each other in the mutual orientation of the structural fragments containing the ester groups. In the centrosymmetric dimeric complex II, the organic molecule I acts as a monodentate thio ligand and adopts only one conformation.  相似文献   

9.
A copper complex with V-shaped ligands, [(L1)Cu2Cl2] n (1), (L1 = 4-(1H-imidazol-1-yl)phenyl) methanone) has been synthesized and characterized by IR spectroscopy, elemental analyses and singlecrystal X-ray diffraction. The crystal of 1 is monoclinic, sp. gr. C2/c with the unit cell parameters a = 17.9496(13), b = 15.3440(13), c = 7.2983(7) Å, and β = 112.875(6)°, Z = 4, R1 = 0.0681, and wR2 = 0.1736 (I > 2 σ). The solid state structure of 1 consists of 2D metal aromatic chloride layers, which are propagating along the bc plane to form a 3D network through hydrogen bonds.  相似文献   

10.
1-[(E)-2-(4-bromophenyl)-1-diazenyl]-3-({3-[(E)-2-(4-bromophenyl)-1-diazenyl]-6-ethylhexahydro-1-pyrimidinyl}methyl)-4-ethylhexahydropyrimidine (1) has been synthesized by reaction of a mixture of formaldehyde and 1,3-pentanediamine{DYTEK®EPdiamine} with p-bromobenzenediazonium chloride. This compound crystallizes in two polymorphic forms 1-α and 1-β whose crystal structures have been determined by single crystal X-ray diffraction analysis. Both polymorphs 1-α and 1-β display crystallographic disorder within the hexahydropyrimidine rings. The molecule of 1 is built up of two equivalent 3-(aryldiazenyl)-6-ethylhexahydro-1-pyrimidinyl groups in the s-trans orientation around the central methylene group (C13). In both structures the triazene moieties adopt the anti configuration around the N=N bonds, displaying significant π-conjugation. The crystal packings are determined only by van der Waals interactions. The crystal structures of 1-α and 1-β are compared with the previously reported structure of the 5,5-dimethylhexahydropyrimidine analogue 3. Compounds 1 and 3 are isomeric with respect to the hexahydropyrimidine moiety. The structures of 1 and 3 are very different in one respect; in 1 the aryldiazenyl-hexahydropyrimidinyl groups are in the s-trans orientation around the central methylene group, whereas in 3 the arrangement of the aryldiazenylhexahydropyrimidinyl groups is the s-cis orientation. Crystal data: 1-α C25H34N8Br2, monoclinic, space group P2(1)/c, a = 9.2150(3), b = 19.4059(6), c = 15.4324(5) Å, β = 98.738(1)°, V = 2727.7(2) Å3, for Z = 4; 1-β C25H34N8Br2, triclinic, space group P-1, a = 9.6009(3), b = 10.7509(4), c = 14.2169(5) Å, α = 99.830(2), β = 105.973(3), γ = 95.578(1)°, V = 1373.9(1) Å3, for Z = 2.  相似文献   

11.
The crystal structures of [(cys-syn-cys-dicyclohexano-18-crown-6 · H3O)][TaF6] and [(cys-syn-cys-dicyclohexano-18-crown-6 · H3O)][NbF6] complex compounds are determined using X-ray diffraction analysis. The tantalum complex has two polymorphic modifications, namely, the monoclinic (I) and triclinic (II) modifications. The unit cell parameters of these compounds are as follows: a = 8.507(4) Å, b = 11.947(5) Å, c = 27.392(12) Å, β = 93.11(1)°, Z = 4, and space group P21/n for modification I; and a = 10.828(1) Å, b = 11.204(1) Å, c = 12.378(1) Å, α = 72.12(1)°, β = 79.40(1)°, γ = 73.70(1)°, Z = 2, and space group P-1 for modification II. The triclinic niobium complex [(cys-syn-cys-dicyclohexano-18-crown-6 · H3O)][NbF6] (III) with the unit cell parameters a = 10.796(3) Å, b = 11.183(3) Å, c = 12.352(3) Å, α = 72.364(5)°, β = 79.577(5)°, γ = 73.773(4)°, Z = 2, and space group P-1 is isostructural with tantalum complex II. The structures of all three complexes are ionic in character. The oxonium cation in complexes I–III is encapsulated by the crown ether and thus forms one ordinary and two bifurcated hydrogen bonds with the oxygen atoms of the crown ether. This macrocyclic cation is bound to the anions through the C-H...F contacts (H...F, 2.48–2.58 Å). The conformation of the macrocycle in complex I differs substantially from that in complex II (III).  相似文献   

12.
The crystal structures of two organosilicon compounds are studied by X-ray diffraction. Crystals of trans-2,8-dihydroxy-2,4,4′,6,6′,8,10,10′,12,12′-decamethyl-5,11-dicarbacyclohexasiloxane, C12H36O6Si6, (I) are studied at 293 K [a = b = 16.310(4) Å, c = 9.849(3) Å, V = 2620(1) Å3, dcalcd = 1.128 g/cm3, space group P4(2)/n, Z = 4, 3370 reflections, wR2 = 0.1167, R1 = 0.0472 for 2291 reflections with F > 4σ(F)]. Crystals of trans-1,4-dihydroxy-1,4-dimethyl-1,4-disilacyclohexane, C6H16O2Si2, (II) are studied at 110 K [a = 6.8253(5) Å, b = 9.5495(8) Å, c = 12.0064(10) Å, α = 101.774(2)°, β = 102.203(2)°, γ = 95.068(2)°, V = 741.8(1) Å3, dcalcd = 1.184 g/cm3, space group \(P\bar 1\), Z = 3, 6267 reflections, wR2 = 0.1052, R1 = 0.0421 for 3299 reflections with F > 4σ(F)]. It is found that the conformation of the ring in compound I, which contains two methylene groups in the cyclohexasiloxane ring, differs from those in its analogues containing only oxygen atoms or one methylene group in the ring. The noticeable difference between the SiCSi angle [123.0(2)°] and the tetrahedral angle is characteristic of cyclohexasiloxanes. Structure II contains three independent molecules with very close conformations. The cyclohexane rings adopt a chair conformation. The methylene groups in II, in distinction to those in I, are characterized by a standard tetrahedral coordination.  相似文献   

13.
The structure of the Meisenheimer complex 2′,4′,6′-trinitro-3′,5′-dihydrospiro(1,3-dioxolane-2,8′-cyclohexadienide) C8H6N3O8(?) 1? with tetra-n-butyl-ammonium C16H36 N(+) has been determined by X-ray crystallography. The compound 1 crystallizes in the space group P21 with two molecules (Z′ = 2) in the asymmetric unit. The unit cell parameters are a = 8.728(3) Å, b = 13.760(4) Å, c = 22.882(7) Å, β = 96.17(3)°. Interactions between the Meisenheimer complex and organic cation in 1 involve only a number of weak to moderate C–H?sO bonds. Thus, it has been concluded that the structure 1 represents the geometry of the Meisenheimer complex minimally influenced by the cation. Comparison the structure 1 and the compound 2 (1? K+?H2O) studied previously reveals an interesting structural effect attributed to coordination of potassium cations with the nitro groups of 1?. It leads to notable shortening of the C–N bond lengths of the nitro groups only, while changes of other bond lengths in the Meisenheimer complex are not significant.  相似文献   

14.
(4E)-5-(3-Chlorophenyl)-N-(4-chlorophenyl)-2-diazo-3-oxopent-4-enoic acid amide (5) was synthesized from p-chloroaniline to N-(4-chlorophenyl)-2-diazo-3-oxo-butyramide (4) with 3-chlorobenzaldehyde. The yielded product 5 was investigated with X-ray crystallographic, NMR, MS, and IR techniques. Compound 5 (C17H11Cl2N3O2, Formula wt = 360.19), crystallizes in the monoclinic space group P21/c with unit cell parameters a = 10.516(2), b = 17.996(4), c = 8.902(2) Å, α = 90.00, β = 105.36(3), γ = 90.00°. V = 1624.5(6) Å3, Z = 4, D x = 1.473 Mg m?3. The final R was 0.0511.  相似文献   

15.
Thirty five low-symmetry tilting phases of the octahedra in which the atoms located at the initial octahedral position remain equivalent are derived for the perovskite structure at the k10(X), k11(M), and k13(R) points of the Brillouin zone. For each low-symmetry phase, structural data are presented and a relationship between the atomic displacements and the order parameters is deduced. All the low-symmetry phases can be obtained by considering only one or two order parameters.  相似文献   

16.
The 2-amino-3-cyano-4-(3,4-dichlorophenyl)-5-oxo-1,4,5,6-tetrahydro-4H-pyrano[2,3-d] pyrimidine (1, C17H15Cl2N5O3) was synthesized and characterized by IR,1H NMR and elemental analysis. The molecular structure of1 was further studied by using X-ray crystallography. The crystals of compound1 are triclinic, space groupP-1,a = 6.0090(4) Å,b = 10.4056(7) Å,c = 15.6021(11) Å, α = 70.983(4), β = 84.056(6), γ = 84.611(6),Z = 2,V = 915.47(11) Å3. Two types of unclassical hydrogen bonds C–H?sO and C–H?sN were presented in the crystals. In addition, there were classical hydrogen bonds in the crystal structure.  相似文献   

17.
The compounds 5(2-thienyl)-and 5(3-thienyl)-dipyrromethane (1 and2, respectively) have been synthesized and isolated from the acid-catalyzed reaction between thiophenes-carboxaldehyde and pyrrole. Characterization by X-ray diffraction confirms molecular structures involving twoortho-substituted pyrrolyl and one thienyl groups. Both the compounds1 and2 were crystallized in the monoclinic space groupP21/n with cell parametersa = 5.7149(16) Å,b = 17.338(6) Å, andc = 11.785(4) Å, β = 98.466(9)°,V = 1155.0(6) Å3 for compound1; anda = 5.828(4) Å,b = 17.424(10) Å,c = 11.822(8) Å, β = 98.10(2)°, andV = 1188.4(13) Å3 for compound2.  相似文献   

18.
The crystal structure of As-containing holtite I is refined (Ital Structures diffractometer, 939 crystallographically independent reflections, anisotropic approximation, R = 0.047). The parameters of the orthorhombic unit cell are a = 4.695(1) Å, b = 11.906(3) Å, c = 20.38(3) Å, sp. gr. Pnma, Z = 4. On the whole, the structural formula obtained, (Si2.43Sb0.36As0.21)BO3[(Al0.62Ta0.26□)Al2(Al0.98□)2(Al0.94□)2O12](O,OH,□)2.65, corresponds to the electron-probe analysis data. The statistical replacement of (Si,As)O4 tetrahedra by pyramidal [SbO3] groups is confirmed. The X-ray diffraction spectra of holtite I are compared with those of holtite II.  相似文献   

19.
Compounds dinitrato(2-formylpyridinesemicarbazone)copper (I), dichloro(2-formylpyridinesemicarbazone) copper hemihydrate (II), and bis(2-formylpyridinesemicarbazone)copper(2+) perchlorate hydrate (III) are synthesized and their crystal structures are determined. In compounds IIII, the neutral 2-formylpyridine semicarbazone molecule (L) is tridentately attached to the copper atom via the N,N,O set of donor atoms. In compounds I and II, the Cu: L ratio is equal to 1: 1, whereas, in III, it is 1: 2. In complex I, the coordination sphere of the copper atom includes two nitrate ions with different structural functions in addition to the L ligand. The structure is built as a one-dimensional polymer in which the NO3 bidentate group fulfills a bridging function. The coordination polyhedron of the copper(2+) atom can be considered a distorted tetragonal bipyramid (4 + 1 + 1). Compound II has an ionic structure in which the main element is the [CuLCl2 · Cu(H2O)LCl]+ dimer. In the dimer, the copper atoms are linked via one of the μ2-bridging chlorine atoms. The coordination polyhedra of the central atoms of the Cu(H2)LCl and CuLCl2 complex fragments are tetragonal bipyramid and tetragonal pyramid, respectively. In compound III, the copper atom is octahedrally surrounded by two L ligands in the mer configuration.  相似文献   

20.
Rb4LiH3(SeO4)4 single crystals (1) are studied by the X-ray diffraction method at 180 K and Rb4LiH3(SO4)4 single crystals (2a–2c) are studied by the neutron diffraction method at 298 K (2a and (2b) and 480 K (2c). It is established that isostructural single crystals 1 and 2 (sp. gr. P41) have analogous systems of hydrogen bonds: chains of four XO4 tetrahedra linked by three H bonds with the central bond (2.49 Å) being somewhat shorter than the terminal ones (2.52–2.54 Å). In the high-temperature 2c phase, the amplitudes of atomic thermal vibrations and the degree of proton disorder in the central hydrogen bond have somewhat elevated values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号