首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is shown theoretically and experimentally that stochastic heating of plasma electrons is highly efficient. Calculations have shown that over the course of 100 periods of an external microwave field the kinetic energy of the particles reaches values of around 1.0 MeV and the average energy reaches values of the order of 0.3 MeV in the field of two oppositely propagating characteristic (eigen) waves of a cylindrical waveguide, with amplitudes 24 kV/cm in a 1 kG stationary magnetic field. Stochastic instability develops as a result of overlapping of non-linear cyclotron resonances. The experimental results agree with the theory: When these waves are excited by a 0.9 MW external source, above a threshold of 0.45 MW one obtains x rays with a photon energy corresponding to a maximum electron energy of the order of 1 MeV over about 800 periods of the external microwave field. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 11, 806–811 (10 June 1999)  相似文献   

2.
The small-scale quasistationary magnetic field appearing in a plasma exhibiting plasma oscillations is considered. It is shown that this magnetic field is capable of leading to dissipation of the electromagnetic waves propagating in the plasma. Zh. Tekh. Fiz. 67, 140–141 (June 1997)  相似文献   

3.
The nonlinear dynamics of the free surface of an ideal dielectric liquid with a large relative permittivity in a strong horizontal electric field has been considered. It has been demonstrated that the interaction between oppositely propagating solitary waves in arbitrary geometry is elastic: they conserve their energy and momentum. The interaction between waves has been numerically simulated with the use of conformal variables. It has been shown that the interaction deforms the waves; this effect is weak for waves with a relatively small amplitude: deformation for oppositely propagating waves with the identical shape is determined by the fourth power of their amplitude. At multiple collisions of strongly nonlinear waves, a tendency to the formation of singularities, i.e., points with a high energy density of the field, is observed.  相似文献   

4.
The dispersion properties of slow electromagnetic surface waves propagating across a constant external magnetic field and along a plane plasma-metal interface at harmonics of the ion cyclotron frequency are studied. The motion of the plasma particles is described by a Vlasov-Boltzmann kinetic equation. The effects of the plasma size, the dielectric permittivity of the transition region between the plasma and metal, and the magnitude of the constant external magnetic field on the dispersion characteristics of ion surface cyclotron waves are studied. Zh. Tekh. Fiz. 69, 83–89 (October 1999)  相似文献   

5.
The theoretical properties of a composite chiral-plasma medium are developed. By using the reaction theorem for a magnetized chiroplasma, we obtain the proof of nonreciprocity based upon the constitutive relationships between electromagnetic vectorsE, B, H, D. Using the Maxwell’s equations and the proposed constitutive relations for a chiral-plasma medium, we derive the vectorsE andH and from these equations, dispersion relations andE-field polarizations are based. The obtained results for waves propagating parallel to the external magnetic field in a cold magnetized chiro-plasma are compared with typical results obtained for a cold plasma. For circulary polarized waves, a new mode conversion is founded with the chiral effect. The chiral rotation is obtained and compared with the Faraday rotation. For waves propagating across the magnetic field, we found a shift of the cut-offs of ordinary and extraordinary waves. On the lower branch of the extraordinary wave mode there is no bands of forbidden frequencies and the reflection point vanishes when the chiral parameter increases.  相似文献   

6.
Magnetoacoustic resonance on nuclear spin waves is measured in the cubic antiferromagnet RbMnF3. A resonance change with respect to a constant magnetic field H 0 with maximum damping at H 0≈4×103 Oe is observed in the amplitude of an acoustic pulse passing through a sample owing to excitation of nuclear spin waves under nuclear magnetoacoustic resonance conditions. A study of the angular dependence of the damping revealed a 90° periodicity consistent with the fact that the [001] direction, around which the rotation takes place, is a four-fold axis of the crystal. An analysis of the dispersion law for nuclear spin waves shows that longitudinal ultrasound propagating along the [001] axis perpendicular to H 0 excites a branch of nuclear spin waves whose frequency depends on the magnitude of the constant magnetic field. Fiz. Tverd. Tela (St. Petersburg) 41, 297–300 (February 1999)  相似文献   

7.
ABSTRACT

A new dispersion relation, with finite Larmor orbit effects, for oblique propagating electromagnetic ion cyclotron (EMIC) waves in a magnetized plasma medium, is derived including the magnetic shear effect. The approximate, yet accurate, dispersion relation is used to implement the ray tracing model. A parabolic magnetic field is considered to model the geomagnetic field in the magnetosphere. Energetic protons are also considered as resonant particles. The propagation characteristics of EMIC waves in the vicinity of the ion cyclotron resonances are investigated in some detail. The results reveal adiabatic oscillating motion for wave and magnetic field fluctuations where high harmonics limit the wave damping and confines the magnetic fluctuations. For inward propagating EMIC waves we find (1) turning points which depend on the wave launch position, and (2) wave trapped areas playing a role in quasi-coherent wave-particle interaction in agreement with the observational and theoretical studies. This wave trapping is an effective process for particle acceleration in the context of space plasmas.  相似文献   

8.
Surface magnetoelastic Love waves and nonuniform distributions of the magnetization and elastic strains are investigated in a uniaxial ferromagnetic film on a massive nonmagnetic substrate in a tangential external magnetic field. A new inhomogeneous phase is predicted having spatial modulation of the order parameter, arising from magnetostrictive coupling of the magnetization with lattice strains near the interface of the magnetoelastic and elastic media. It is shown that, at some critical magnetic field H c, different from the orientational transition field in an isolated sample, a magnetoelastic Love wave propagating parallel to the magnetization vector in the film plane becomes unstable. The frequency and group velocity of the wave vanish at wave number k=k c≠0 and the wave freezes, forming a domain structure localized in the film and adjoining substrate. Fiz. Tverd. Tela (St. Petersburg) 41, 665–671 (April 1999)  相似文献   

9.
The absorption coefficient α k for longitudinal ultrasonic (15 MHz) waves propagating transverse to the direction of a magnetic field H is measured in single crystal gadolinium. It is found that in fields H⩽600 Oe, the peak in α k is shifted toward lower temperatures, while the absolute magnitude of the absorption rises with increasing H. It is shown on the basis of dynamic scaling that the anomalous behavior of α k in fields H⩽600 Oe can be explained by introducing a magnetic field analog of the Landau-Khalatnikov relaxation mechanism. Fiz. Tverd. Tela (St. Petersburg) 39, 339–340 (February 1997)  相似文献   

10.
It is shown that in an intense radiation field the electron friction force resulting from electron-ion collisions becomes an electron accelerating force on account of absorption of radiation by electrons. It is pointed out that the thermal conductivity increases. Pis'ma Zh. éksp. Teor. Fiz. 64, No. 1, 19–22 (10 July 1996)  相似文献   

11.
The Cherenkov radiation of generalized Swihart waves is investigated in connection with the slow motion of an Abrikosov-Josephson vortex, which corresponds to a 2 π kink in the phase difference of Cooper pairs on opposite sides of a tunnel junction. The radiative friction force acting on such a vortex is determined. An evaluation is made of the steady-state vortex velocity when the accelerating influence of an electric current through the Josephson junction is compensated by radiative slowing of the vortex due to Cherenkov radiation from the Abrikosov-Josephson vortex. Fiz. Tverd. Tela (St. Petersburg) 39, 444–448 (March 1997)  相似文献   

12.
Ultrasound damping at T=4.2 K in single crystal easy-plane antiferromagnetic KMnF3 is studied experimentally as a function of the magnitude and direction of a constant magnetic field H at frequencies of 640–670 MHz, corresponding to the frequencies of nuclear spin waves. Two experimental situations are examined: in the first, the vector H lies in the easy magnetization plane (001), and in the second, H forms an angle with (001). For longitudinal ultrasound waves propagating along the hard magnetization axis [001], it is found that the damping depends resonantly on the magnitude of the field H. In the first case a single damping maximum is observed, and in the second, two damping peaks that are well resolved with respect to the field. The angular dependence of the resonance damping signals on the direction of the constant magnetic field is found to have a 90° periodicity in all cases. The observed effects are explained by resonant ultrasonic excitation of nuclear spin waves. On the basis of an analysis of the magnetoacoustic interaction energy, it is shown that in the first case, nonzero oscillations of the antiferromagnetism vector L occur only in the basal plane, while in the second, oscillations of L occur both in the basal and a vertical plane, which are associated, respectively, with two branches of the nuclear spin waves. It is also shown that the 90° periodicity in the angular dependence of the damping signals is associated with a fourth order [001] axis. Zh. éksp. Teor. Fiz. 112, 1830–1840 (November 1997)  相似文献   

13.
A theoretical study is made of the trajectories and of the changes in magnitude and direction of the wave vectors of magnetostatic backward surface waves with different frequencies propagating in ferrite-insulator-metal structures with different insulating layer thicknesses and magnetized by a linearly nonuniform static field. It is shown that both forward and backward magnetostatic surface waves (MSSWs) propagate in a waveguide channel, on one side of which MSSWs undergo mirror reflection and on the other side of which their propagation direction is rotated, independently of the thickness of the insulator in the structure. It is shown that when MSSWs propagate in a nonuniform field, the forward wave is converted into a backward wave and, under certain conditions, the backward wave is converted into a forward wave. Some features of the propagation characteristics of magnetostatic backward surface waves are determined. Zh. Tekh. Fiz. 69, 70–77 (February 1999)  相似文献   

14.
An explanation is proposed for the gigantic magnetoacoustic effect that we observed in KMnF3 in previous work {Kh. G. Bogdanova, V. A. Golenishchev-Kutuzov, M. I. Kurkin et al., Zh. éksp. Teor. Fiz. 112, 1830 (1997) [JETP 85, 1001 (1997)]}. The effect entails a tenfold amplitude reduction of an acoustic pulse in a magnetic field that varies over the range 0–8 kOe. It is shown that this effect is due to the interference of two nuclear magnetoelastic waves propagating in the sample under magnetoacoustic resonance conditions, if this resonance occurs in the region of strong spatial dispersion of nuclear spin waves. The effect is said to be gigantic because it exceeds in magnitude the magnetoacoustic effects observed previously in magnetically ordered materials even though it is due to nuclear magnetism, which is 105 times weaker than electronic magnetism. We observe a concomitant anomalous dependence of the dispersion of the velocity of sound on the external magnetic field. Zh. éksp. Teor. Fiz. 115, 1727–1739 (May 1999)  相似文献   

15.
The problems studied in this paper involve the action of laser radiation or a particle beam on a condensed material. Such an interaction produces a hot corona, and the recoil momentum accelerates the cold matter. In the coordinate frame tied to the accelerated target, the acceleration is equivalent to the acceleration of gravity. For this reason, the density distribution ρ is hydrostatic in the zeroth approximation. In this paper the structure of such a flow is studied for a two-phase equation of state. It is shown that instead of a power-law density profile, which obtains for a constant specific-heat ratio, a complicated distribution containing a region with a sharp variation of ρ arises. Similar characteristics of the density profile arise with isochoric heating of matter by an ultrashort laser pulse and the subsequent expansion of the heated layer. The formation of a rarefaction wave and the interaction of oppositely propagating rarefaction waves in a two-phase medium are studied. It is very important to take account of the two-phase nature of the material, since conditions (p a ∼1 Mbar) are often realized under which the foil material comes after expansion into the two-phase region of the phase diagram. Zh. éksp. Teor. Fiz. 115, 2091–2105 (June 1999)  相似文献   

16.
An investigation is made of the self-interaction of whistler waves (whistlers) involving the formation of waveguide channels in a collisional magnetoactive plasma as a result of its additional ionization by the field of the propagating wave. Simplified equations are derived to describe the behavior of the whistler field in a channel of enhanced plasma density in the presence of electron collisions. Self-consistent distributions of the field and the plasma corresponding to steady-state ionization self-channeling of whistlers are obtained by numerically solving the equations for the field together with balance equations for the electron density and energy. Our estimates indicate that this effect can be observed under laboratory conditions. Zh. éksp. Teor. Fiz. 112, 1285–1298 (October 1997)  相似文献   

17.
Solitary bending waves have been observed on domain boundaries of Néel type in wafers of yttrium orthoferrite, having a very sharp leading edge and an extended trailing edge and offset as a whole from the domain boundary and moving with high speeds close to the limiting velocity. Head-on collisions of two such waves of the same amplitude lead to their complete annihilation. Analogous collisions of two such waves, but of different amplitudes, lead to the appearance of a wave with the difference amplitude moving in the same direction as the wave of larger amplitude. The solitary bending waves investigated in this study appear to move under the action of gyroscopic forces acting on magnetic vortices on domain boundaries in yttrium orthoferrite, analogous to vertical Bloch lines with departure of the magnetization vector from the ac plane. From equality of the gyroscopic force with the friction force acting on the leading edge of the solitary bending wave we have estimated the amplitudes of these waves and the magnitudes of the topological charges of the magnetic vortices. Zh. éksp. Teor. Fiz. 115, 2160–2169 (June 1999)  相似文献   

18.
The influence of the molecular subsystem on the properties of surface-type waves (STW’s) propagating along a plasma-metal boundary is examined with consideration of the thermal motion of the electrons. The dynamics of the molecular subsystem is described using the equation for the polarization vector, which is equivalent to a quantum-mechanical treatment of a rarefied gas with phenomenological consideration of the dissipation. A dispersion equation for surface-type waves is obtained. The molecular subsystem influences both the phase velocity of the waves and the penetration depth. In the case of a weakly ionized medium there is a forbidden frequency band for surface-type waves. Zh. Tekh. Fiz. 67, 47–49 (December 1997)  相似文献   

19.
A theoretical analysis is made of the dispersion properties of surface waves propagating along the azimuth in magnetized cylindrical plasma waveguides. It is shown that surface oscillations of the ion component may propagate in these waveguides. Zh. Tekh. Fiz. 68, 25–28 (December 1998)  相似文献   

20.
The return current induced in a plasma by a relativisitc electron beam generates a new electron-ion two-stream instability (return current instability). Although the effect of these currents on the beam-plasma e-e instability is negligible, there exists a range of wave numbers which is unstable only to return current (RC) instability and not to e-e instability. The electromagnetic waves propagating along the direction of the external magnetic field, in which the plasma is immersed, are stabilized by these currents but the e.m. waves with frequencies,ω 2Ω e 2ω pe 2 (Ω e andω pe being cyclotron and plasma frequency for the electrons of the plasma respectively) propagating transverse to the magnetic field get destabilized. Heuristic estimates of plasma heating, due to RC instability and due to decay of ion-acoustic turbulence generated by the return current, are made. The fastest time scale on which the return current delivers energy to the plasma due to the scattering of ion-sound waves by the electrons can be ∼ω pi −1 (ω pi being the plasma frequency for the ions).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号