首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the study of flow of a neutral admixture in a porous medium, it is most often assumed in the stochastic formulation that the porosity is constant and a determinate quantity, and the velocity is a random function [1–4]. The velocity distribution is usually regarded as known. Flow in a porous medium with random porosity has been studied to a far lesser extent. We note [5], which studies the averaged equations obtained within the framework of the correlation approximation. We consider the model problem of one-dimensional motion of a fluid particle (position of the front for flow of a neutral admixture in a porous medium) in a medium with random porosity. For a particular form of random porosity field, expressions are obtained for the one- and two-point densities of the distribution of the position of the particle. A study is made of the dependences of the first four moments and the correlation function of the position of the particle as functions of the time. It is shown that for large values of the time the motion of the particle is asymptotically similar to Brownian motion. It is shown by means of numerical modeling that the results obtained transfer to the case of an arbitrary random porosity field. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 59–65, November–December, 1986.  相似文献   

2.
The motion and heat and mass transfer of particles of a disperse admixture in nonisothermal jets of a gas and a low-temperature plasma are simulated with allowance for the migration mechanism of particle motion actuated by the turbophoresis force and the influence of turbulent fluctuations of the jet flow velocity on heat and mass transfer of the particle. The temperature distribution inside the particle at each time step is found by solving the equation of unsteady heat conduction. The laws of scattering of the admixture and the laws of melting and evaporation of an individual particle are studied, depending on the injection velocity and on the method of particle insertion into the jet flow. The calculated results are compared with data obtained with ignored influence of turbulent fluctuations on the motion and heat and mass transfer of the disperse phase. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 3, pp. 95–108, May–June, 2008.  相似文献   

3.
The flow past a nonuniform porous spherical particle immersed in a uniform steady-state stream is studied in the Stokes approximation. For a power-law radial dependence of the particle permeability coefficient, an analytical solution for the velocity and pressure fields outside and inside the particle is obtained. Volgograd, Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 179–184, January–February, 2000.  相似文献   

4.
An unsteady gas-particle flow in a hypersonic shock tunnel is studied numerically. The study is performed in the period from the instant when the diaphragm between the high-pressure and low-pressure chambers is opened until the end of the transition to a quasi-steady flow in the test section. The dispersed phase concentration is extremely low, and the collisions between the particles and their effect on the carrier gas flow are ignored. The particle size is varied. The time evolution of the particle concentration in the test section is obtained. Patterns of the quasi-steady flow of the dispersed phase in the throat of the Laval nozzle and the flow around a model (sphere) are presented. Particle concentration and particle velocity lag profiles at the test-section entrance are obtained. The particle-phase flow structure and the time needed for it to reach a quasi-steady regime are found to depend substantially on the particle size. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 102–113, September–October, 2008.  相似文献   

5.
Parameters of a rarefied gas flow through a rack of flat plates aligned across the flow are studied by means of the joint numerical solution of the Boltzmann and Navier-Stokes equations. A subsonic flow regime is considered. The changes in flow characteristics are calculated as functions of the free-stream velocity and plate temperature. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 1, pp. 59–67, January–February, 2008.  相似文献   

6.
Influence of geometry on separation efficiency in a hydrocyclone   总被引:2,自引:0,他引:2  
A numerical study of the gas–liquid–solid multiphase flow in hydrocyclones is presented. Three models of turbulence, the RNG kε model, the Reynolds stress model and Large eddy simulation with the volume of fluid model (VOF) multiphase model for simulating air core are compared in order to predict axial and tangential velocity distributions. This presentation is mainly aimed at identifying an optimal method, used to study effective parameters, based on which, eventually, effect of inlet flow rate variations and body dimension variations such as underflow diameter, overflow diameter and cone angle on the separation performance and pressure drop are investigated. The results are then used in the simulation of particle flow described by the stochastic Lagrangian model. The results suggest that the predicted size classifications are approximately similar to those of RSM and LES methods. Predictions using the RSM model are found in agreement with experimental results with a marginal error within the range of 4 to 8%. Proceeding model validation, parametric studies have been carried out concerning the influence of velocity inlet, particle size and body dimension such as underflow and overflow diameter and cone angle. The predictions demonstrate that the flow fields in the hydrocyclones with different sizes and lengths are different, which yields different performances.  相似文献   

7.
In this work we examine first the flow field of a confined jet produced by a turbulent flow in a long cylindrical pipe issuing in an abrupt angle diffuser. Second, we examine the dispersion of inertial micro-particles entrained by the turbulent flow. Specifically, we examine how the particle dispersion field evolves in the multiscale flow generated by the interactions between the large-scale structures, which are geometry dependent, with the smaller turbulent scales issued by the pipe which are advected downstream. We use Large-Eddy-Simulation (LES) for the flow field and Lagrangian tracking for particle dispersion. The complex shape of the domain is modelled using the immersed-boundaries method. Fully developed turbulence inlet conditions are derived from an independent LES of a spatially periodic cylindrical pipe flow. The flow field is analyzed in terms of local velocity signals to determine spatial coherence and decay rate of the coherent K–H vortices and to make quantitative comparisons with experimental data on free jets. Particle dispersion is analyzed in terms of statistical quantities and also with reference to the dynamics of the coherent structures. Results show that the particle dynamics is initially dominated by the Kelvin–Helmholtz (K–H) rolls which form at the expansion and only eventually by the advected smaller turbulence scales.  相似文献   

8.
Measurements were obtained with a velocimeter that simultaneously illuminates the particulate in a flow with argon and He–Ne lasers and the scattered light is passed through a carefully controlled iodine filter. The iodine cell absorbs the argon emission at a rate proportional to the velocity of the scattering particle, while the absorption of scattered He–Ne light is independent of velocity. A tunable acousto-optic filter is used to multiplex the argon and He–Ne signals collected from a single photodetector. The problem of detector alignment in conventional Doppler global velocimetry is thus avoided. Experimental results on a scattering disk and an axisymmetric jet are presented and compared with laser Doppler anemometry measurements. Received: 7 March 2000/Accepted: 5 January 2001  相似文献   

9.
10.
A particle image velocimetry system for microfluidics   总被引:20,自引:0,他引:20  
 A micron-resolution particle image velocimetry (micro-PIV) system has been developed to measure instantaneous and ensemble-averaged flow fields in micron-scale fluidic devices. The system utilizes an epifluorescent microscope, 100–300 nm diameter seed particles, and an intensified CCD camera to record high-resolution particle-image fields. Velocity vector fields can be measured with spatial resolutions down to 6.9×6.9×1.5 μm. The vector fields are analyzed using a double-frame cross-correlation algorithm. In this technique, the spatial resolution and the accuracy of the velocity measurements is limited by the diffraction limit of the recording optics, noise in the particle image field, and the interaction of the fluid with the finite-sized seed particles. The stochastic influence of Brownian motion plays a significant role in the accuracy of instantaneous velocity measurements. The micro-PIV technique is applied to measure velocities in a Hele–Shaw flow around a 30 μm (major diameter) elliptical cylinder, with a bulk velocity of approximately 50 μm s-1. Received: 26 November 1997/Accepted: 26 February 1998  相似文献   

11.
A time-series measurement method is proposed to detect velocity fields in a microchannel taking into account Brownian motion of submicron tracer particles. The present study proposes spatially averaged time-resolved particle-tracking velocimetry (SAT–PTV), which can detect temporal variations of fluid flow and eliminate errors associated with Brownian motion without losing temporal resolution. Velocity vectors of tracer particles obtained by PTV are spatially averaged in each interrogation window of particle-image velocimetry, yielding full velocity field information with temporal resolution. Synthetic particle images, which include Brownian motion of submicron fluorescent particles in flow fields with linear velocity gradients, are generated to validate the ability of SAT–PTV to track particles. SAT–PTV correctly captures the velocity gradient profiles. The spatial resolution based on the size of the first interrogation window and the measurement depth of the microscope system is 6.7 m×6.7 m×1.9 m, within which several vectors are averaged. SAT–PTV is shown to measure the velocity field of a pulsating flow generated by an electrokinetic pump.An earlier version of this paper appeared in the Fourth International Symposium on Particle Image Velocimetry at Göttingen, Germany, 17–19 September 2001.  相似文献   

12.
A one and a half stage transonic turbine was tested using a two component laser–doppler–velocimetry system. The measurements were carried out in order to record rotor phase resolved velocity, flow angle and turbulence distributions upstream and downstream of the second stator row at several different angular stator–stator positions (“clocking” positions). Altogether, the measurements downstream of the second stator were performed for ten different clocking positions and upstream of the second stator for two different clocking positions. These different clocking positions have a significant influence on the flow field upstream and downstream of the second stator. Furthermore error estimation and a discussion of the tracer particle response are discussed.  相似文献   

13.
The results of flow visualization and particle image velocimetry (PIV) studies of steady streaming flows near oscillating spheroids (aspect ratios of 0.75, 1, and 1.33) are reported for normalized amplitudes of 0.025–0.15 and Reynolds numbers of 27–89. The oscillations are described by either a single-frequency sine wave or the sum of two such sine waves with different frequencies. For normalized amplitudes of 5% or less, the PIV data suggest that steady streaming flow fields superpose. In other words, the time-independent portion of the velocity field created by forcing the spheroid simultaneously at two different frequencies is found to be the sum of the two steady streaming velocity fields created by forcing the body individually at each of the two frequencies.  相似文献   

14.
A third-order Lagrangian asymptotic solution is derived for gravity–capillary waves in water of finite depth. The explicit parametric solution gives the trajectory of a water particle and the wave kinematics for Lagrangian points above the mean water level, and in a water column. The water particle orbits and mass transport velocity as functions of the surface tension are obtained. Some remarkable trajectories may contain one or multiple sub-loops for steep waves and large surface tension. Overall, an increase in surface tension tends to increase the motions of surface particles including the relative horizontal distance travelled by a particle as well as the time-averaged drift velocity  相似文献   

15.
Numerical simulation of Poiseuille flow of liquid Argon in a nanochannel using the non-equilibrium molecular dynamics simulation (NEMD) is performed. The nanochannel is a three-dimensional rectangular prism geometry where the concerned numbers of Argon atoms are 2,700, 2,550 and 2,400 at 102, 108 and 120 K. Poiseuille flow is simulated by embedding the fluid particles in a uniform force field. An external driving force, ranging from 1 to 11 PN (Pico Newton), is applied along the flow direction to inlet fluid particles during the simulation. To obtain a more uniform temperature distribution across the channel, local thermostating near the wall are used. Also, the effect of other mixing rules (Lorenthz–Berthelot and Waldman–Kugler rules) on the interface structure are examined by comparing the density profiles near the liquid/solid interfaces for wall temperatures 108 and 133 K for an external force of 7 PN. Using Kong and Waldman–Kugler rules, the molecules near the solid walls were more randomly distributed compared to Lorenthz–Berthelot rule. These mean that the attraction between solid–fluid atoms was weakened by using Kong rule and Waldman–Kugler rule rather than the Lorenthz–Berthelot rule. Also, results show that the mean axial velocity has symmetrical distribution near the channel centerline and an increase in external driving force can increase maximum and average velocity values of fluid. Furthermore, the slip length and slip velocity are functions of the driving forces and they show an arising trend with an increase in inlet driving force and no slip boundary condition is satisfied at very low external force (<1 PN).  相似文献   

16.
The turbulent fluid and particle interaction in the turbulent boundary layer for cross flow over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating velocities of both phases. Two size ranges of particles (30μm–60μm and 80μm–150μm) at certain concentrations were used for considering the effects of particle sizes on the mean velocity profiles and on the turbulent intensity levels. The measurements clearly demonstrated that the larger particles damped fluid turbulence. For the smaller particles, this damping effect was less noticeable. The measurements further showed a delay in the separation point for two phase turbulent cross flow over a cylinder. The project supported by the National Natural Science Foundation of China  相似文献   

17.
In this study, we use the method of homogenization to develop a filtration law in porous media that includes the effects of inertia at finite Reynolds numbers. The result is much different than the empirically observed quadratic Forchheimer equation. First, the correction to Darcy’s law is initially cubic (not quadratic) for isotropic media. This is consistent with several other authors (Mei and Auriault, J Fluid Mech 222:647–663, 1991; Wodié and Levy, CR Acad Sci Paris t.312:157–161, 1991; Couland et al. J Fluid Mech 190:393–407, 1988; Rojas and Koplik, Phys Rev 58:4776–4782, 1988) who have solved the Navier–Stokes equations analytically and numerically. Second, the resulting filtration model is an infinite series polynomial in velocity, instead of a single corrective term to Darcy’s law. Although the model is only valid up to the local Reynolds number, at the most, of order 1, the findings are important from a fundamental perspective because it shows that the often-used quadratic Forchheimer equation is not a universal law for laminar flow, but rather an empirical one that is useful in a limited range of velocities. Moreover, as stated by Mei and Auriault (J Fluid Mech 222:647–663, 1991) and Barree and Conway (SPE Annual technical conference and exhibition, 2004), even if the quadratic model were valid at moderate Reynolds numbers in the laminar flow regime, then the permeability extrapolated on a Forchheimer plot would not be the intrinsic Darcy permeability. A major contribution of this study is that the coefficients of the polynomial law can be derived a priori, by solving sequential Stokes problems. In each case, the solution to the Stokes problem is used to calculate a coefficient in the polynomial, and the velocity field is an input of the forcing function, F, to subsequent problems. While numerical solutions must be utilized to compute each coefficient in the polynomial, these problems are much simpler and robust than solving the full Navier–Stokes equations.  相似文献   

18.
The results of investigating shock-wave interaction with a particle cloud on the range of transonic relative velocities are presented. Transition of the two-phase flow from the supersonic to the subsonic regime during phase velocity relaxation under conditions of well-expressed gas-phase nonstationarity was observed. The effect of gas acceleration in the subsonic phase interaction region, previously predicted by the authors on the basis of the accelerating screen model, is confirmed experimentally. The presence of a substantial chaotic component of the particle longitudinal velocity, which indicates close internal phase interactions of the collision type, is demonstrated. Novosibirsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 165–173, July–August, 2000. The work received financial support from the Russian Foundation for Basic Research (project N98-01-00722) and INTAS (project N97-2027).  相似文献   

19.
A kinetic model for the probability density function (PDF) of the particle velocity in a turbulent flow with account for particle collisions is presented. The model is tested by comparison with the results of a numerical experiment for a nonstationary homogeneous shear layer. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 105–112, July–August, 1998. The study received financial support from the International Science Foundation INTAS (project No. 94-4348) and the Russian Foundation for Basic Research (project No. 97-01-00398).  相似文献   

20.
The aim of this communication is to show the ability of POD to compute the instantaneous flow velocity when applying the Lagrangian technique to predict particle dispersion. The instantaneous flow velocity at the particle's location is obtained by solving a low-order dynamical model, deduced by a Galerkin projection of the Navier-Stokes equations onto each POD eigenfunction and it is coupled with the particle's equation of motion. This technique is applied to particle dispersion in a three-dimensional lid driven cavity. It yields a substantial decrease in computing time in comparison with LES computation and it enables treating different cases of particle dispersion Published in Prikladnaya Mekhanika, Vol. 44, No. 1, pp. 133–142, January 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号