首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A tone usually declines in loudness when preceded by a more intense inducer tone. This phenomenon is called "loudness recalibration" or "induced loudness reduction" (ILR). The present study investigates how ILR depends on level, loudness, and duration. A 2AFC procedure was used to obtain loudness matches between 2500-Hz comparison tones and 500-Hz test tones at 60 and 70 dB SPL, presented with and without preceding 500-Hz inducer tones. For 200-ms test and comparison tones, the amount of ILR did not depend on inducer level (set at 80 dB SPL and above), but ILR was greater with 200- than with 5-ms inducers, even when both were equally loud. For 5-ms tones, ILR was as great with 5- as with 200-ms inducers and about as great as when test and inducer tones both lasted 200 ms. These results suggest that (1) neither the loudness nor the SPL of the inducer alone governs ILR, and (2) inducer duration must equal or exceed test-tone duration to yield maximal amounts of ILR. Further analysis indicates that the efferent system may be partly responsible for ILR of 200-ms test tones, but is unlikely to account for ILR of 5-ms tones.  相似文献   

2.
Induced loudness reduction (ILR) is the decline in the loudness of a weaker tone induced by a preceding stronger tone. In this study we investigate how ILR depends on exposure time and signal frequency. For 12 listeners, successive magnitude estimation was used to measure the loudness of 70-dB-SPL test tones, presented with and without preceding 80-dB-SPL inducer tones at the same frequency. Experiment 1 measured the evolution of ILR over time at 0.5 kHz. The results suggest that ILR may begin after a single inducer presentation, and increases over at least 2 to 3 min as the inducer and test tones are repeated every few seconds. Following the cessation of the inducer, the recovery of loudness is slow and still incomplete after 1 min. Experiment 2 extended the measurements to additional signal frequencies. The results show that the amount of ILR and its evolution over time are approximately the same at frequencies from 0.5 to 8 kHz. Similarly, loudness matching showed no effect of frequency on ILR, which averaged 8.2 dB. These findings, together with previously noted similarities among ILR, ipsilaterally induced loudness adaptation, and temporary loudness shift, indicate that loudness reduction induced by stronger sounds is a very common phenomenon.  相似文献   

3.
The majority of studies on induced loudness reduction (ILR) use an experimental paradigm that results in an underestimation of the amount of ILR. Most of those studies utilize loudness matches between tones of two different frequencies (a test tone and a comparison tone) with (experimental condition) and without (baseline condition) an inducer tone at the test frequency. The change in level of the comparison tone between the baseline and experimental conditions is the amount of ILR. In those experiments, the level of the comparison tone in the baseline condition tends to be substantially higher (often about 10 dB) than in the experimental condition. Because of this level difference, exposure to the baseline condition immediately prior to the experimental condition causes unintended ILR for the comparison tone. In this study, the delay between the baseline and experimental conditions was varied and it was determined that the amount of ILR is underestimated by about 30% and the variability is increased when the experimental condition is run immediately after the baseline condition. A second experiment using a Békésy-tracking procedure showed that ILR maximizes rapidly upon exposure to an inducer and decays over the course of several minutes after the inducer is removed.  相似文献   

4.
An intermittent tone in one ear may induce a large decline in the loudness of a continuous tone in the contralateral ear [Botte et al., J. Acoust. Soc. Am. 72, 727-739 (1982)]. To uncover the basis for this induced loudness adaptation, the method of successive magnitude estimations was used to measure the loudness of a test tone in one ear during and after a single presentation of a brief inducer tone in the contralateral ear. Duration and frequency of the inducer were varied. The frequency of the test tone was set at 500, 1000, or 3000 Hz. Both inducer and test tones were at 60 dB SPL. When the inducer lasted 5 s or more and was at the same frequency as the test tone, the loudness of the test tone was reduced by 80% to 100% while the inducer was on. As the inducer frequency moved away from the test tone, the loudness reduction declined gradually except for a more marked drop at the point where the frequency separation exceeded the critical bandwidth. Loudness remained depressed after the inducer went off. Additional measurements showed that the amount of loudness reduction corresponded closely to the measured movement of the inducer's sound image away from the center of the listener's head (decentralization).  相似文献   

5.
This experiment examined the partial masking of periodic complex tones by a background of noise, and vice versa. The tones had a fundamental frequency (F0) of 62.5 or 250 Hz, and components were added in either cosine phase (CPH) or random phase (RPH). The tones and the noise were bandpass filtered into the same frequency region, from the tenth harmonic up to 5 kHz. The target alone was alternated with the target and the background; for the mixture, the background and target were either gated together, or the background was turned on 400 ms before, and off 200 ms after, the target. Subjects had to adjust the level of either the target alone or the target in the background so as to match the loudness of the target in the two intervals. The overall level of the background was 50 dB SPL, and loudness matches were obtained for several fixed levels of the target alone or in the background. The resulting loudness-matching functions showed clear asymmetry of partial masking. For a given target-to-background ratio, the partial loudness of a complex tone in a noise background was lower than the partial loudness of a noise in a complex tone background. Expressed as the target-to-background ratio required to achieve a given loudness, the asymmetry typically amounted to 12-16 dB. When the F0 of the complex tone was 62.5 Hz, the asymmetry of partial masking was greater for CPH than for RPH. When the F0 was 250 Hz, the asymmetry was greater for RPH than for CPH. Masked thresholds showed the same pattern as for partial masking for both F0's. Onset asynchrony had some effect on the loudness matching data when the target was just above its masked threshold, but did not significantly affect the level at which the target in the background reached its unmasked loudness. The results are interpreted in terms of the temporal structure of the stimuli.  相似文献   

6.
Induced loudness reduction (ILR) is a phenomenon by which a preceding higher-level tone (an inducer tone) reduces the loudness of a lower-level tone (a test tone). The strength of this effect depends on a number of parameters, reviewed here. Some of the implications of ILR on loudness data are presented via the analysis of several studies in which ILR likely resulted in otherwise unexplained biases in data sets. These results serve as examples of the pervasiveness of ILR in loudness measurements and indicate that it is necessary to consider ILR when designing any psychoacoustical experiment in which level varies.  相似文献   

7.
The influence of middle-ear muscle (MEM) contraction on auditory threshold has been measured for pure tones of 0.25, 0.5, and 1.5 kHz. The reflex-activating signal was a 3-kHz pure tone. Signal paradigms were chosen to reduce or eliminate the effects of binaural loudness summation, contralateral direct masking, and contralateral remote and backward masking effects, and to maximize the influence of MEM contraction. Results indicate that under no condition was behavioral threshold affected by the MEM contraction induced using a pure-tone stimulus of 3 kHz, 105 dB SPL.  相似文献   

8.
Buus and Florentine [J. Assoc. Res. Otolaryngol. 3, 120-139 (2002)] have proposed that loudness recruitment in cases of cochlear hearing loss is caused partly by an abnormally large loudness at absolute threshold. This has been called "softness imperception." To evaluate this idea, loudness-matching functions were obtained using tones at very low sensation levels. For subjects with asymmetrical hearing loss, matches were obtained for a single frequency across ears. For subjects with sloping hearing loss, matches were obtained between tones at two frequencies, one where the absolute threshold was nearly normal and one where there was a moderate hearing loss. Loudness matching was possible for sensation levels (SLs) as low as 2 dB. When the fixed tone was presented at a very low SL in an ear (or at a frequency) where there was hearing impairment, it was matched by a tone with approximately the same SL in an ear (or at a frequency) where hearing was normal (e.g., 2 dB SL matched 2 dB SL). This relationship held for SLs up to 4-10 dB, depending on the subject. These results are not consistent with the concept of softness imperception.  相似文献   

9.
The influence of the degree of envelope modulation and periodicity on the loudness and effectiveness of sounds as forward maskers was investigated. In the first experiment, listeners matched the loudness of complex tones and noise. The tones had a fundamental frequency (F0) of 62.5 or 250 Hz and were filtered into a frequency range from the 10th harmonic to 5000 Hz. The Gaussian noise was filtered in the same way. The components of the complex tones were added either in cosine phase (CPH), giving a large crest factor, or in random phase (RPH), giving a smaller crest factor. For each F0, subjects matched the loudness between all possible stimulus pairs. Six different levels of the fixed stimulus were used, ranging from about 30 dB SPL to about 80 dB SPL in 10-dB steps. Results showed that, at a given overall level, the CPH and the RPH tones were louder than the noise, and that the CPH tone was louder than the RPH tone. The difference in loudness was larger at medium than at low levels and was only slightly reduced by the addition of a noise intended to mask combination tones. The differences in loudness were slightly smaller for the higher than for the lower F0. In the second experiment, the stimuli with the lower F0s were used as forward maskers of a 20-ms sinusoid, presented at various frequencies within the spectral range of the maskers. Results showed that the CPH tone was the least effective forward masker, even though it was the loudest. The differences in effectiveness as forward maskers depended on masker level and signal frequency; in order to produce equal masking, the level of the CPH tone had to be up to 35 dB above that of the RPH tone and the noise. The implications of these results for models of loudness are discussed and a model is presented based on neural activity patterns in the auditory nerve; this predicts the general pattern of loudness matches. It is suggested that the effects observed in the experiments may have been influenced by two factors: cochlear compression and suppression.  相似文献   

10.
Both distortion-product otoacoustic emissions (DPOAEs) and performance in an auditory-masking task involving combination tones were measured in the same frequency region in the same ears. In the behavioral task, a signal of 3.6?kHz (duration 300?ms, rise/fall time 20?ms) was masked by a 3.0-kHz tone (62?dB SPL, continuously presented). These two frequencies can produce a combination tone at 2.4?kHz. When a narrowband noise (2.0-2.8?kHz, 17?dB spectrum level) was added as a second masker, detection of the 3.6-kHz signal worsened by 6-9?dB (the Greenwood effect), revealing that listeners had been using the combination tone at 2.4?kHz as a cue for detection at 3.6?kHz. Several outcomes differed markedly by sex and racial background. The Greenwood effect was substantially larger in females than in males, but only for the White group. When the magnitude of the Greenwood effect was compared with the magnitude of the DPOAE measured in the 2.4?kHz region, the correlations typically were modest, but were high for Non-White males. For many subjects, then, most of the DPOAE measured in the ear canal apparently is not related to the combination-tone cue that is masked by the narrowband noise.  相似文献   

11.
It is well known that a tone presented binaurally is louder than the same tone presented monaurally. It is less clear how this loudness ratio changes as a function of level. The present experiment was designed to directly test the Binaural Equal-Loudness-Ratio hypothesis (BELRH), which states that the loudness ratio between equal-SPL monaural and binaural tones is independent of SPL. If true, the BELRH implies that monaural and binaural loudness functions are parallel when plotted on a log scale. Cross-modality matches between string length and loudness were used to directly measure binaural and monaural loudness functions for nine normal listeners. Stimuli were 1-kHz 200-ms tones ranging in level from 5 dB SL to 100 dB SPL. A two-way ANOVA showed significant effects of level and mode (binaural or monaural) on loudness, but no interaction between the level and mode. Consequently, no significant variations were found in the binaural-to-monaural loudness ratio across the range of levels tested. This finding supports the BELRH. In addition, the present data were found to closely match loudness functions derived from binaural level differences for equal loudness using the model proposed by Whilby et al. [J. Acoust. Soc. Am. 119, 3931-3939 (2006)].  相似文献   

12.
An intermittent monaural tone may induce a decline in the loudness of a continuous tone presented to the same ear [Canévet et al., Br. J. Audiol. 17, 49-57 (1983)]. Two experiments studied the frequency selectivity of loudness adaptation induced in this manner. The method of successive magnitude estimations was used to measure the loudness of a monaural 84-s test tone before and after a single presentation of a 24-s inducer tone in the same ear. The first experiment shows that, for an inducing tone (500, 1000, or 3000 Hz) approximately 15 dB more intense than a test tone set to one of 21 different frequencies, adaptation is greatest when the two tones have the same frequency; with increasing difference between the test-tone and inducer frequencies, adaptation progressively declines. The second experiment measured frequency selectivity in the loudness reduction caused by a 1000-Hz inducer as a function of its level. As inducer level went from 75 to 95 dB (with test tone constant at 60 phons), selectivity passes progressively from the type seen in short-term or low-level fatigue (maximal for the 1000-Hz test tone) to a type seen in long-term or high-level fatigue (maximal for the 1000-Hz test tone) to a type seen in long-term or high-level fatigue (maximal at frequencies higher than that of the inducer or fatiguing tone). A common cochlear origin and a continuity between the mechanisms of ipsilaterally induced adaptation and high-level fatigue are suggested by the data.  相似文献   

13.
Hearing thresholds measured with high-frequency resolution show a quasiperiodic change in level called threshold fine structure (or microstructure). The effect of this fine structure on loudness perception over a range of stimulus levels was investigated in 12 subjects. Three different approaches were used. Individual hearing thresholds and equal loudness contours were measured in eight subjects using loudness-matching paradigms. In addition, the loudness growth of sinusoids was observed at frequencies associated with individual minima or maxima in the hearing threshold from five subjects using a loudness-matching paradigm. At low levels, loudness growth depended on the position of the test- or reference-tone frequency within the threshold fine structure. The slope of loudness growth differs by 0.2 dB/dB when an identical test tone is compared with two different reference tones, i.e., a difference in loudness growth of 2 dB per 10-dB change in stimulus. Finally, loudness growth was measured for the same five subjects using categorical loudness scaling as a direct-scaling technique with no reference tone instead of the loudness-matching procedures. Overall, an influence of hearing-threshold fine structure on loudness perception of sinusoids was observable for stimulus levels up to 40 dB SPL--independent of the procedure used. Possible implications of fine structure for loudness measurements and other psychoacoustic experiments, such as different compression within threshold minima and maxima, are discussed.  相似文献   

14.
Loudness level measurements in human listeners are straightforward; however, it is difficult to convey the concepts of loudness matching or loudness comparison to (non-human) animals. For this reason, prior studies have relied upon objective measurements, such as response latency, to estimate equal loudness contours in animals. In this study, a bottlenose dolphin was trained to perform a loudness comparison test, where the listener indicates which of two sequential tones is louder. To enable reward of the dolphin, most trials featured tones with identical or similar frequencies, but relatively large sound pressure level differences, so that the loudness relationship was known. A relatively small percentage of trials were "probe" trials, with tone pairs whose loudness relationship was not known. Responses to the probe trials were used to construct psychometric functions describing the loudness relationship between a tone at a particular frequency and sound pressure level and that of a reference tone at 10 kHz with a sound pressure level of 90, 105, or 115 dB re 1 μPa. The loudness relationships were then used to construct equal loudness contours and auditory weighting functions that can be used to predict the frequency-dependent effects of noise on odontocetes.  相似文献   

15.
The intensity jnd is often assumed to depend on the slope of the loudness function. One way to test this assumption is to measure the jnd for a sound that falls on distinctly different loudness functions. Two such functions were generated by presenting a 1000-Hz tone in narrow-band noise (925-1080 Hz) set at 70 dB SPL and in wideband noise (75-9600 Hz) set at 80 dB SPL. Over a range from near threshold to about 75 dB SPL, the loudness function for the tone is much steeper in the narrow-band noise than in the wideband noise. At 72 dB SPL, where the two loudness curves cross, the tone's jnd was measured in each noise by a block up-down two-interval forced-choice procedure. Despite the differences in slope (and in sensation level), the jnd (delta I/I) is nearly the same in the two noises, 0.22 in narrow-band noise and 0.20 in wideband noise. The mean value of 0.21 is close to the value of 0.25 interpolated from Jesteadt et al. [J. Acoust. Soc. Am. 61, 169-176 (1977)] for a 1000-Hz tone that had the same loudness in quiet as did our 72-dB tone in noise, but lay on a loudness function with a much lower slope. These and other data demonstrate that intensity discrimination for pure tones is unrelated to the slope of the loudness function.  相似文献   

16.
Recent research on loudness has focused on contextual effects on loudness, both assimilation and recalibration. The current experiments examined loudness recalibration [Marks, J. Exp. Psychol. 20, 382-396 (1994)]. In the first experiment, an adaptive tracking procedure was used to measure loudness recalibration as a function of standard- and recalibration-tone level. The standard-tone frequencies were 500 and 2500 Hz and the levels were 80-, 70-, 60-, and 40-dB SPL, and threshold. Seventeen dB of loudness recalibration was obtained (combined over both frequencies) in the 60-dB SPL condition. This amount of loudness recalibration, while substantial, is still less than that obtained by Marks (22 dB), using the method of paired comparisons. The second experiment sought to duplicate Marks' earlier experiment [Marks, J. Exp. Psychol. 20, 382-396 (1994), experiment 2]. The results of this experiment (21 dB) were almost identical to those obtained by Marks. The results of experiment 1 indicate that loudness recalibration is maximum when the recalibration tone is moderately louder than the subsequent standard tones. Relatively little loudness recalibration is exhibited when the standard-tone level equals the recalibration-tone level. In addition, there is no loudness recalibration at threshold. The tracking procedure also identified that the onset of loudness recalibration is very rapid. The difference between the maximum loudness recalibration obtained at each frequency (11 dB at 500 Hz, 6 dB at 2500 Hz) suggests that loudness recalibration is dependent upon the frequency of the standard tone.  相似文献   

17.
The dependence of binaural loudness summation on interaural phase of tones ranging between 250 and 1400 Hz was investigated in a series of experiments using a loudness-matching procedure. Observers matched loudness of monaural-binaural and binaural-binaural pairs of alternating tones by adjusting the amplitude of one of the two. Adjustable and reference components of each tone pair were equal in frequency and were varied independently in interaural phase angle through the range +/- 177 degrees. For each tone frequency, steps in loudness summation of approximately 3 dB were obtained in the vicinity of a constant value of phase angle, theta t, which depends on the Hornbostel-Wertheimer constant (tau H) according to the relations theta t = 2 pi f tau H for tones of low frequency (f less than or equal to 1/2 tau H), and theta t = 2 pi(1 - f tau H) for tones of higher frequency (1/2 tau H less than or equal to f less than or equal to 1/tau H). Spatial relationships among alternating tones observed in the above conditions covaried with relative loudness in a complex manner, but exhibited qualitative changes in the vicinity of theta t.  相似文献   

18.
The loudness of auditory (A), tactile (T), and auditory-tactile (A+T) stimuli was measured at supra-threshold levels. Auditory stimuli were pure tones presented binaurally through headphones; tactile stimuli were sinusoids delivered through a single-channel vibrator to the left middle fingertip. All stimuli were presented together with a broadband auditory noise. The A and T stimuli were presented at levels that were matched in loudness to that of the 200-Hz auditory tone at 25 dB sensation level. The 200-Hz auditory tone was then matched in loudness to various combinations of auditory and tactile stimuli (A+T), and purely auditory stimuli (A+A). The results indicate that the matched intensity of the 200-Hz auditory tone is less when the A+T and A+A stimuli are close together in frequency than when they are separated by an octave or more. This suggests that A+T integration may operate in a manner similar to that found in auditory critical band studies, further supporting a strong frequency relationship between the auditory and somatosensory systems.  相似文献   

19.
Thresholds were measured for the detection of inharmonicity in complex tones. Subjects were required to distinguish a complex tone whose partials were all at exact harmonic frequencies from a similar complex tone with one of the partials slightly mistuned. The mistuning which allowed 71% correct identification in a two-alternative forced-choice task was estimated for each partial in turn. In experiment I the fundamental frequency was either 100, 200, or 400 Hz, and the complex tones contained the first 12 harmonics at equal levels of 60 dB SPL per component. The stimulus duration was 410 ms. For each fundamental the thresholds were roughly constant when expressed in Hz, having a mean value of about 4 Hz (range 2.4-7.3 Hz). In experiment II the fundamental frequency was fixed at 200 Hz, and thresholds for inharmonicity were measured for stimulus durations of 50, 110, 410, and 1610 ms. For harmonics above the fifth the thresholds increased from less than 1 Hz to about 40 Hz as duration was decreased from 1610-50 ms. For the lower harmonics (up to the fourth) threshold changed much less with duration, and for the three shorter durations thresholds for each duration were roughly a constant proportion of the harmonic frequency. The results suggest that inharmonicity is detected in different ways for high and low harmonics. For low harmonics the inharmonic partial appears to "stand out" from the complex tone as a whole. For high harmonics the mistuning is detected as a kind of "beat" or "roughness," presumably reflecting a sensitivity to the changing relative phase of the mistuned harmonic relative to the other harmonics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
This study investigated effects of a previous sound presentation at the absolute threshold of hearing. Changes in threshold were measured when a pure tone at 60 dB SPL preceded a test tone in the contra- or ipsilateral ear. When the previous and test sounds both had the same frequency of 500 Hz, threshold decreased approximately 2 dB in the contralateral ear, and increased slightly in the ipsilateral ear. On the other hand, when the frequency of the previous sound differed from that of the test sound, the threshold was decreased slightly in the ipsilateral ear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号