首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We use a time-dependent dynamical mean-field-hydrodynamic model to predict and study bright solitons in a degenerate fermion-fermion mixture in a quasi-one-dimensional cigar-shaped geometry using variational and numerical methods. Due to a strong Pauli-blocking repulsion among identical spin-polarized fermions at short distances there cannot be bright solitons for repulsive interspecies fermion-fermion interactions. However, stable bright solitons can be formed for a sufficiently attractive interspecies interaction. We perform a numerical stability analysis of these solitons and also demonstrate the formation of soliton trains. These fermionic solitons can be formed and studied in laboratory with present technology.  相似文献   

2.
通过磁场可以用原子散射的Feshbach共振来调节原子间的相互作用,使之成为排斥或吸引,以及改变作用的强度,运用这个方法可以使费米原子形成分子,也可以在多体作用下形成费米原子配对,在温度够低的条件下可以得到分子的BEC以及原子配对的凝聚体,这些现象在实验室中的实现是2004年物理学的重要成就之一,本文对此给予简短的评述。  相似文献   

3.
We introduce a new approach to create and detect Majorana fermions using optically trapped 1D fermionic atoms. In our proposed setup, two internal states of the atoms couple via an optical Raman transition-simultaneously inducing an effective spin-orbit interaction and magnetic field-while a background molecular BEC cloud generates s-wave pairing for the atoms. The resulting cold-atom quantum wire supports Majorana fermions at phase boundaries between topologically trivial and nontrivial regions, as well as "Floquet Majorana fermions" when the system is periodically driven. We analyze experimental parameters, detection schemes, and various imperfections.  相似文献   

4.
We consider a gas of cold fermionic atoms having two spin components with interactions characterized by their s-wave scattering length a. At positive scattering length the atoms form weakly bound bosonic molecules which can be evaporatively cooled to undergo Bose-Einstein condensation, whereas at negative scattering length BCS pairing can take place. It is shown that, by adiabatically tuning the scattering length a from positive to negative values, one may transform the molecular Bose-Einstein condensate into a highly degenerate atomic Fermi gas, with the ratio of temperature to Fermi temperature T/T(F) approximately 10(-2). The corresponding critical final value of k(F)/a/, which leads to the BCS transition, is found to be about one-half, where k(F) is the Fermi momentum.  相似文献   

5.
An alternative approach to the usual perturbative S-matrix evaluation of quantum field theories is presented which is nonperturbative and provides full space-time resolution. We study the dynamical development of the force between two fermion wave packets for the Yukawa system. The spatial distribution of the virtual bosons that act as mediators of the force can be analyzed along with the fermionic densities. Using a potential function for the fermion-fermion interaction is a good approximation to the field theoretical calculations when the Fock space is restricted to only one boson, but in the full quantum field theory the fermion-fermion force is enhanced by higher-order multiboson processes. Furthermore, the normally attractive fermion-fermion Yukawa force can, in principle, be manipulated to even be repulsive if the momentum modes available to the virtual bosons are restricted.  相似文献   

6.
We study a mixture of fermionic and bosonic cold atoms on a two-dimensional optical lattice, where the fermions are prepared in two isospin states and the bosons have Bose-Einstein condensed. Number density fluctuations of the condensate form delocalized bosonic modes which couple to the fermionic atoms similarly to the electron-phonon coupling in crystals. We study the phase diagram for this system at fixed fermion density of one per site. We find that tuning of the lattice parameters and interaction strengths drives the system to undergo antiferromagnetic ordering, s-wave and d-wave pairing superconductivity, or a charge density-wave phase. We use functional renormalization group analysis where retardation effects are fully taken into account. We calculate response functions and also provide estimates of the energy gap associated with the dominant order, and how it depends on different parameters of the problem.  相似文献   

7.
We map out the detuning-magnetization phase diagram for a magnetized (unequal number of atoms in two pairing hyperfine states) gas of fermionic atoms interacting via an s-wave Feshbach resonance (FR). The phase diagram is dominated by the coexistence of a magnetized normal gas and a singlet-paired superfluid with the latter exhibiting a BCS-Bose Einstein condensate crossover with reduced FR detuning. On the BCS side of strongly overlapping Cooper pairs, a sliver of finite-momentum paired Fulde-Ferrell-Larkin-Ovchinnikov magnetized phase intervenes between the phase-separated and normal states. In contrast, for large negative detuning a uniform, polarized superfluid, that is, a coherent mixture of singlet Bose-Einstein-condensed molecules and fully magnetized single-species Fermi sea, is a stable ground state.  相似文献   

8.
Fermi gases confined in tight one-dimensional waveguides form two-particle bound states of atoms in the presence of a strongly attractive interaction. Based on the exact solution of the one-dimensional spin-1/2 interacting Fermi gas, we demonstrate that a stable excited state with no pairing between attractive fermionic atoms can be realized by a sudden switch of interaction from the strongly repulsive regime to strongly attractive regime. Such a state is an exact fermionic analog of the experimentally observed super-Tonks-Girardeau state of bosonic Cesium atoms [Science 325, 1224 (2009)] and should be possible to be observed by the experiment. The frequency of the lowest breathing mode of the fermionic super-Tonks-Girardeau gas is calculated as a function of the interaction strength, which could be used as a detectable signature for the experimental observation.  相似文献   

9.
We discuss a physical mechanism of a non-BCS nature which can stabilize a superconducting state in a strongly repulsive electronic system. By considering the two-dimensional Hubbard model with spatially modulated electron hoppings, we demonstrate how kinetic-energy frustration can lead to robust d-wave superconductivity at arbitrarily large on-site repulsion. This phenomenon should be observable in experiments using fermionic atoms, e.g. 40K, in specially prepared optical lattices.  相似文献   

10.
We investigate the Bose-Einstein condensation (BEC, superfluidity) of particle-hole pairs in ultracold fermionic atoms with repulsive interactions and arbitrary polarization, which are trapped within optical lattices. In the strongly repulsive limit, the dynamics of particle-hole pairs can be described by a hard-core Bose-Hubbard model. The insulator-superfluid and charge-density-wave- (CDW) superfluid phase transitions can be induced by decreasing and increasing the potential depths with controlling the trapping laser intensity, respectively. The parameter and polarization dependence of the critical temperatures for the ordered states (BEC and/or CDW) are discussed simultaneously.  相似文献   

11.
We study the possibility of coexistence in a two component fermionic system of a superfluid state with a metallic-like state with gapless excitations at a Fermi surface. We consider a two-component system with mixing (hybridization) between them and attractive interactions between only one type of quasi-particles. Besides a conventional BCS regime, we find for sufficiently strong interactions a superfluid state of Bose condensed pairs at zero temperature. We investigate whether these pairs can coexist with a metallic-like state characterized by gapless electronic excitations. The zero temperature phase diagram as a function of the strength of the attractive interaction and the mixing is obtained. For simplicity and to clarify the nature of the quantum phase diagram we consider the case of s-wave pairing.  相似文献   

12.
We study superfluidity of paired Bosonic atoms in optical lattices. The atoms have strong repulsive on-site energy. Single atom tunneling is severely suppressed while the atom-pair may co-tunnel by the second order quantum transition, which induces paired superfluidity as repulsive nearest-neighbor interactions are included. The mean-field phase diagram and low energy excitations are explored for a square lattice system.  相似文献   

13.
Spatial correlations are observed in an ultracold gas of fermionic atoms close to a Feshbach resonance. The correlations are detected by inducing spin-changing rf transitions between pairs of atoms. We observe the process in the strongly interacting regime for attractive as well as for repulsive atom-atom interactions and both in the regime of high and low quantum degeneracy. The observations are compared with a two-particle model that provides theoretical predictions for the measured rf transition rates.  相似文献   

14.
We have experimentally studied few-body impurity systems consisting of a single fermionic atom and a small bosonic field on the sites of an optical lattice. Quantum phase revival spectroscopy has allowed us to accurately measure the absolute strength of Bose-Fermi interactions as a function of the interspecies scattering length. Furthermore, we observe the modification of Bose-Bose interactions that is induced by the interacting fermion. Because of an interference between Bose-Bose and Bose-Fermi phase dynamics, we can infer the mean fermionic filling of the mixture and quantify its increase (decrease) when the lattice is loaded with attractive (repulsive) interspecies interactions.  相似文献   

15.
We evaluate in a mean-field model the equilibrium stability conditions of a gaseous mixture of bosonic and spin-polarized fermionic atoms inside a pancake-shaped or a cigar-shaped harmonic trap, under conditions such that the trap thickness approaches the magnitude of the s-wave scattering lengths but the atoms still experience collisions in three dimensions. With decreasing dimensionality, the Fermi pressure plays an increasingly dominant role. Full demixing in the case of repulsive boson-fermion interactions can be induced by squeezing the thickness of the clouds in a pancake-shaped trap or by lowering the number of trapped fermions in a cigar-shaped trap. Collapse under attractive interspecies interaction in quasi-one-dimensional confinement is inhibited within the range of validity of a mean-field model.  相似文献   

16.
A framework for analytical studies of superconducting systems is presented and illustrated. The formalism, based on the conformal transformation of momentum space, allows one to study the effects of both the dispersion relation and the structure of the pairing interaction in two-dimensional anisotropic high-T c superconductors. In this method, the number of employed degrees of freedom coincides with the dimension of the momentum space, which is different compared to that in the standard Van Hove scenario with a single degree of freedom. A new function, the kernel of the density of states, is defined and its relation to the standard density of states is explained. The versatility of the method is illustrated by analyzing coexistence and competition between spin-singlet and spin-triplet order parameters in superconducting systems with a tight-binding-type dispersion relation and an anisotropic pairing potential. Phase diagrams of stable superconducting states in the coordinates η (the ratio of hopping parameters) and n (the carrier concentration) are presented and discussed. Moreover, the role of attractive and repulsive on-site interactions for the stability of the s-wave order parameter is explained.  相似文献   

17.
We investigate the fermionic SU(N) Hubbard model on the two-dimensional square lattice for weak to moderate interactions using renormalization group and mean-field methods. For the repulsive case U>0 at half filling and small N the dominant tendency is towards breaking of the SU(N) symmetry. For N>6 staggered flux order takes over as the dominant instability, in agreement with the large-N limit. Away from half filling for N=3 two flavors remain half filled by cannibalizing the third flavor. For U<0 and odd N a full Fermi surface coexists with a superconductor. These results may be relevant to future experiments with cold fermionic atoms in optical lattices.  相似文献   

18.
Pairing leads to superfluidity in ultracold atomic gases, but this pairing can be frustrated when a population imbalance is present between the pairing partners. Here we investigate how vortices in the fermionic superfluid are affected by imbalance. We show that the vortex core radius is increased by imbalance, accommodating excess component atoms. This has two intriguing consequences. Firstly, a small imbalance acts as a catalyst for vortex formation, decreasing the critical rotation frequency. Secondly, imbalanced gases near critical imbalance can exhibit rotationally induced superfluidity.  相似文献   

19.
We demonstrate tuning of interactions between fermionic 40K and bosonic 87Rb atoms by Feshbach resonances and access the complete phase diagram of the harmonically trapped mixture from phase separation to collapse. On the attractive side of the resonance, we observe a strongly enhanced mean-field energy of the condensate due to the mutual mean-field confinement, predicted by a Thomas-Fermi model. As we increase heteronuclear interactions beyond a threshold, we observe an induced collapse of the mixture. On the repulsive side of the resonance, we observe vertical phase separation of the mixture in the presence of the gravitational force, thus entering a completely unexplored part of the phase diagram of the mixture. In addition, we identify the 515 G resonance as p wave by its characteristic doublet structure.  相似文献   

20.
In this work we analyze the dynamical behavior of the collision between two clouds of fermionic atoms with opposite spin polarization. By means of the time-evolving block decimation (TEBD) numerical method, we simulate the collision of two one-dimensional clouds in a lattice. There is a symmetry in the collision behaviour between the attractive and repulsive interactions. We analyze the pair formation dynamics in the collision region, providing a quantitative analysis of the pair formation mechanism in terms of a simple two-site model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号