首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Broadband dielectric and terahertz spectroscopy (10(-2)-10(+12) Hz) are combined with pulsed field gradient nuclear magnetic resonance (PFG-NMR) to explore charge transport and translational diffusion in the 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. The dielectric spectra are interpreted as superposition of high-frequency relaxation processes associated with dipolar librations and a conductivity contribution. The latter originates from hopping of charge carriers on a random spatially varying potential landscape and quantitatively fits the observed frequency and temperature dependence of the spectra. A further analysis delivers the hopping rate and enables one to deduce--using the Einstein-Smoluchowski equation--the translational diffusion coefficient of the charge carriers in quantitative agreement with PFG-NMR measurements. By that, the mobility is determined and separated from the charge carrier density; for the former, a Vogel-Fulcher-Tammann and for the latter, an Arrhenius temperature dependence is obtained. There is no indication of a mode arising from the reorientation of stable ion pairs.  相似文献   

2.
Dielectric relaxation plays an important role in many chemical processes in proteins, including acid-base titration, ligand binding, and charge transfer reactions. Its complexity makes experimental characterization difficult, and so, theoretical approaches are valuable. The comparison of molecular dynamics free energy simulations with simpler models such as a dielectric continuum model is especially useful for obtaining qualitative insights. We have analyzed a charge insertion process that models deprotonation or mutation of an important side chain in the active site of the enzyme aspartyl-tRNA synthetase. Complexes with the substrate aspartate and the analogue asparagine were studied. The resulting dielectric relaxation was found to involve both ligand and side chain rearrangements in the active site and to account for a large part of the overall charging free energy. With the continuum model, charge insertion is performed along a two-step pathway: insertion into a static environment, followed by relaxation of the environment. These correspond to different physical processes and require different protein dielectric constants. A low value of approximately 1 is needed for the static step, consistent with the parametrization of the molecular mechanics charge set used. A value of 3-6 (depending on the exact insertion site and the nature of the ligand) is needed to describe the dielectric relaxation step. This moderate value indicates that, for this system, the local protein polarizability in the active site is within at most a factor of 2 of that expected at nonspecific positions in a protein interior.  相似文献   

3.
Brillouin spectroscopy has been used to examine high-frequency dynamical behavior of aqueous solutions of poly(ethylene glycol) (Mw ≈ 400g/mol) at 298K in the entire concentration region. It was found that a relaxation process takes place in the experimental frequency window that significantly affects the shape of experimentally recorded spectrum of the density fluctuations (dynamical structure factor). The process detected was attributed to segmental motion of the flexible polymeric chain. The full spectrum analysis of Brillouin spectra has been performed taking advantage of the relaxation function previously used in describing a single relaxation process in dielectric examination of water solutions of PEG 400. The proposed data processing procedure permits a qualitative reproduction of concentration dependencies of the hypersonic wave velocity and absorption measured. The shapes of the concentration dependencies of the relaxation times obtained from the Brillouin and the dielectric spectroscopies are in good agreement over a very broad concentration range, although their absolute values are scaled by the factor of 3. This result indicate that the two processes revealed independently by dielectric and Brillouin spectroscopies, apparently separated in time-scale, are just the same relaxation process.  相似文献   

4.
Micellar solutions made of a fully fluorinated surfactant, LiPFN, form water-soluble complexes with lysozyme in a wide concentration range. Such complexes are stabilized by electrostatic and, very presumably, double-layer interactions. The mixtures were investigated by combining electrophoretic mobility, DLS, and dielectric relaxation methods. The former gives information on the surface charge density of protein-micelle complexes and indicates that the resulting adducts retain a negative charge (i.e., charge neutralization is incomplete). The double-layer thickness of proteins, micelles, and protein-micelle complexes is also connected to the dielectric relaxation frequency. Changes in particle size (inferred by DLS), charge density, and double-layer thickness are closely interrelated to each other. A model was developed to quantify such properties.  相似文献   

5.
In this paper the complex dielectric constant of a concentrated colloidal suspension in a salt-free medium is theoretically evaluated using a cell model approximation. To our knowledge this is the first cell model in the literature addressing the dielectric response of a salt-free concentrated suspension. For this reason, we extensively study the influence of all the parameters relevant for such a dielectric response: the particle surface charge, radius, and volume fraction, the counterion properties, and the frequency of the applied electric field (subgigahertz range). Our results display the so-called counterion condensation effect for high particle charge, previously described in the literature for the electrophoretic mobility, and also the relaxation processes occurring in a wide frequency range and their consequences on the complex electric dipole moment induced on the particles by the oscillating electric field. As we already pointed out in a recent paper regarding the dynamic electrophoretic mobility of a colloidal particle in a salt-free concentrated suspension, the competition between these relaxation processes is decisive for the dielectric response throughout the frequency range of interest. Finally, we examine the dielectric response of highly charged particles in more depth, because some singular electrokinetic behaviors of salt-free suspensions have been reported for such cases that have not been predicted for salt-containing suspensions.  相似文献   

6.
The effect of the linear charge density of natural polyelectrolyte, carrageenan, on the ion binding to carrageenan molecules in relation to the gelation was investigated by using the dielectric relaxation spectroscopy, dc conductivity, optical rotation, and differential scanning calorimetry (DSC). Although carrageenan is an anionic polysaccharide, carrageenan molecules in the helix state at low temperatures can bind not only cation, such as potassium and cesium, but also anion, such as iodide. The dc conductivity steeply decreases just below the coil–helix transition temperature, which indicates the binding of ion to the carrageenan molecules in the helix state due to the increase of the linear charge density compared with that in the coil state. The addition of NaI promotes the helix formation, and prevents from aggregation of helices, which was suggested by the results of the dynamic shear modulus and the DSC, and resulted in an increase of the relaxation amplitude of the lowest frequency relaxation (kHz) attributed to the fluctuation of the tightly bound counter ions along the high charge density region (helix). It is concluded that binding of iodide induces (1) the increase in the amount of tightly bound counterions to carrageenan molecules and (2) the formation of non-aggregated helix.  相似文献   

7.
In this note, we present a set of dielectric loss relaxation measurements of aqueous charged liposome suspensions during the whole aggregation process induced by oppositely charged adsorbing polyions. The system experiences two concomitant effects known as "reentrant condensation" and "charge inversion," resulting in the formation of liposome aggregates whose average size reaches a maximum in the vicinity of the electroneutrality condition, accompanied to a progressive reduction of their overall electrical charge. Far from the neutrality, from both sides, polyion-coated liposomes exist with a charge of opposite sign. The dielectric loss relaxation in these complex aggregating systems has never been measured so far and we report here, for the first time, the dielectric loss behavior of liposomes built up by a cationic lipid and stuck together by poly(acrylate), which is a flexible oppositely charged polyion. The data are analyzed in the framework of standard electrokinetic model theory. The evolution of the aggregation process as a function of the polyion content is mainly characterized by a counterion polarization effect, governed by the surface charge density of the aggregates and hence by the zeta-potential.  相似文献   

8.
采用基于密度泛函理论框架下的第一性原理平面波超软赝势方法, 计算了In2O3电子结构和光学线性响应函数, 系统研究了In2O3电子结构与光学性质的内在关系. 利用计算的能带结构和态密度分析了带间跃迁占主导地位的In2O3材料的能量损失函数、介电函数、反射图谱, 根据电荷密度差分图分析了In2O3材料的化学和电学特性. 研究结果表明In2O3光学透过率在可见光范围内高达85%, 可作为优异的透明导电薄膜材料. 同时, 计算结果为我们制备基于In2O3透明导电材料的设计与大规模应用提供了理论依据, 也为监测和控制这一类透明导电材料的生长过程提供了可能性.  相似文献   

9.
The flocculation of colloidal suspensions is an important unit operation in many industries, as it greatly improves the performance of solid separation processes. The number of available techniques for evaluating flocculation processes on line is limited, and most of these are only functional in dilute suspensions. Thus, techniques usable for flocculation characterization in high-solids suspensions are desirable. This study investigates the use of dielectric spectroscopy to monitor the flocculation of polystyrene particles with a cationic polymer. The frequency-dependent permittivity is modeled and the model parameters are used to describe the particle aggregation. The results show a peak in the modeled time constants of the dielectric relaxation at the onset of flocculation. Further, the adsorption of polymeric flocculant onto the particle surface results in a reduction in particle charge, evident as a decrease in the magnitude of the dielectric dispersion. The use of dielectric spectroscopy is found to be valuable for assessing flocculation processes in high-solids suspensions, as changes in parameters such as floc size and charge can be detected.  相似文献   

10.
The dielectric relaxation of polyelectrolyte-coated colloidal particles is examined via "exact" numerical solutions of the governing electrokinetic equations. The charged polymer coatings are characterized by a nominal charge density, thickness, and permeability. Brush-like segment density profiles are considered here, but more sophisticated segment and charge density profiles are accommodated by the model. The role of added counterions and nonspecific adsorption is considered briefly before examining how the experimentally measured conductivity and dielectric constant increments reflect the frequency of the applied electric field, the strength of the electrolyte, and characteristics of the polymer coatings, namely the charge, charge density, and permeability. Finally, a strategy is suggested by which dielectric spectroscopy and electrophoresis can be used to characterize polymer-coated particles. This approach complements experiments where electroviscous effects such as dynamic light scattering and sedimentation are weak.  相似文献   

11.
Li PC  Prasad R 《The Analyst》2003,128(6):706-711
For the first time, we report the acoustic wave detection of chemical species being transported in a capillary tube to a region where acoustic coupling occurs. The measured parameter was a change in phase, which was originally only attributed to a change in solution density as the analyte passed by the detection region. Accordingly, we report the detection of change in phase as various chemical species (e.g. Cy5 dye, Cy5-derivatized glycine and underivatized glycine) were introduced into and migrated along a capillary tube through electrokinetic processes. To improve detection sensitivity, we modified various experimental parameters, such as run buffer concentration, capillary wall thickness and transducer frequency. Although acoustic wave detection was feasible, the peak width and detection limit were inadequate as compared to conventional detection methods for HPLC or CE. Nevertheless, the effects of various physical and chemical relaxation processes on acoustic wave absorption were discussed, and this has shed some light on explaining some observations, which cannot be explained by density differences alone. Accordingly, the acoustic wave method is suggested to investigate these processes, as studied in ultrasonic relaxation spectroscopy, in a flow system.  相似文献   

12.
《Liquid crystals》2012,39(15):2201-2212
ABSTRACT

Four compounds from 3FmHPhF homologous series of chiral smectogenic fluorinated compounds (m = 2, 4, 5, 6) were studied by frequency domain dielectric spectroscopy, electro-optic measurements, X-ray diffraction and differential scanning calorimetry. Values of the relaxation time and dielectric increment of relaxation processes versus temperature and bias field were determined. The temperature-dependent tilt angles, spontaneous polarisations, switching times, rotational viscosities, and average intermolecular distances and correlation lengths within smectic layers were obtained. Experimental results were supplemented by density functional theory calculations of isolated 3FmHPhF molecular geometries, and the relationship between the molecular structures and the transverse component of their dipole moments was studied for the mesogens with m = 2, 4, 5, 6, 7. The results are discussed in terms of the length of the CmH2m flexible carbon chain of the homologues.  相似文献   

13.
The spectral densities related to various relaxation processes of the glass former 2-ethyl-1-hexanol (2E1H), a monohydroxy alcohol, are probed using several nuclear magnetic resonance (NMR) experiments as well as via dielectric noise spectroscopy (DNS). On the basis of the spectral density relating to voltage fluctuations, i.e., without the application of external electrical fields, DNS enables the detection of the structural relaxation and of the prominent, about two decades slower Debye process. The NMR-detected spectral density, sensitive to the orientational fluctuations of the hydroxyl deuteron, also reveals dynamics slower than the structural relaxation, but not as slow as the Debye process. Rotational and translational correlation functions of 2E1H are probed using stimulated-echo NMR techniques which could only resolve the structural dynamics or faster processes. The experimental results are discussed with reference to models that were suggested to describe the dynamics in supercooled alcohols.  相似文献   

14.
First-principles calculations of the second-order optical response functions and the dielectric functions of urea [CO(NH(2))(2)] and some of its derivatives such as monomethylurea (H(2)NCONHCH(3), MMU), and N,N'-dimethylurea (H(3)CHNCONHCH(3), DMU) crystals are performed. On the basis of the density functional theory (DFT) in the local-density approximation (LDA), the highly accurate full-potential projected augmented wave (FP-PAW) method was used to obtain the electronic structure. Over a wide frequency range (0.0-10.0 eV), the dielectric constants and second-harmonic generation (SHG) susceptibilities of the urea crystal family have been obtained, and the results are in good agreement with the experimental values. The origin of the linear and nonlinear optical (NLO) properties of the urea crystal family has been analyzed by coupling the calculated electronic structure and optical spectrum. The prominent spectra of χ((2)) are successfully correlated with the dielectric function ε(ω) in terms of single-photon and double-photon resonances. The virtual electron (VE) and virtual hole (VH) processes have also been performed for the urea crystal family. From the research into the electron deformation density, crystal configuration, substitutional group, and so forth, it is found that the origin of the SHG of the urea crystal family is the charge transfer due to the strong "(?)push-pull" effect along the hydrogen bond, which favors a head-to-tail arrangement of the molecules and enhances the SHG response. The electron-donating substitutional group supplies more electrons to the electron-accepting group, and helps to form large dipoles in molecules. The influence on the NLO properties of the local symmetry of the substitutional group is also discussed in detail.  相似文献   

15.
Roy KI  Lucy CA 《Electrophoresis》2003,24(3):370-379
The mobilities of a series of aromatic ammonium ions, ranging in charge from +1 to + 3, were investigated by capillary electrophoresis using buffers consisting of 0-75% v/v methanol. This is an extension of our previous studies involving anion mobility in methanol-water media [1]. Absolute mobilities were determined by extrapolation of the effective mobilities to zero ionic strength according to the Pitts' equation. For all of the buffer compositions studied, the ionic strength effect increased with increasing cation charge, and varied as a function of solvent 1/eta epsilon (1/2) as predicted by the electrophoretic term within the Pitts' equation. In the presence of methanol, the ionic strength effects became more dramatic. The absolute mobilities of the cations were altered by the addition of methanol to the electrophoretic media. For example, at 75% MeOH, a migration order reversal was observed between the + 2 and + 3 ammonium ions. These solvent-induced selectivity changes are attributed to dielectric friction. As predicted by the Hubbard-Onsager dielectric friction model, dielectric friction increased with increasing methanol content and with increasing analyte charge. Further, the changes in cation mobility correlated to the changes in solvent relaxation time (tau), epsilon and eta. Although not predicted by the Hubbard-Onsager theory, the + 3 ammonium ion experienced more dielectric friction than the - 3 sulfonate and - 3 carboxylate investigated previously [1]. This apparent failure of the Hubbard-Onsager model results from its continuum nature, whereby ion-solvent interactions are not taken into account.  相似文献   

16.
In this report, we have primarily studied the influence of nickel (Ni) incorporation on ac electrical conductivity, dielectric relaxation mechanism and impedance spectroscopy characteristics of copper oxide (CuO) thin films synthesized by successive ion layer adsorption and reaction (SILAR) technique. The materials has been characterized using X-ray diffraction and UV–VIS spectrophotometric measurements. Reduction in grain size in doped films up to a certain extent of doping (tentatively 6%) were confirmed from XRD analysis, beyond which there is a reverse tendency. Increase in band gap in doped films were observed up to 6% doping level which could be associated with enhanced carrier density in doped films. Impedance spectroscopy analysis confirmed enhancement of ac conductivity and dielectric constant for doped samples. The results are useful for capacitive application of the films. Beyond 6% doping level, AC conductivity and dielectric constant shows a reverse tendency indicating reduced density of charge carriers. Nyquist plot shows contribution of both grain and grain boundary towards total resistance and capacitance. Imaginary part of complex modulus and imaginary part of complex impedance was used to find the migration/activation energy to electrical conduction process. Nearly identical result was obtained from relaxation frequency/relaxation time approach suggesting hopping mechanism of charge carriers.  相似文献   

17.
Although polaronic interactions and states abound in charge transfer processes and reactions, quantitative and separable determination of electronic and nuclear relaxation is still challenging. The present paper employs the amplitudes, polarizations, and phases of four-wave mixing signals to obtain unique dynamical information on relaxation processes following photoinduced charge transfer between iodide and 1-ethyl-4-(carbomethoxy)pyridinium ions. Pump-probe signal amplitudes reveal the coherent coupling of an underdamped 115 cm(-1) nuclear mode to the charge transfer excitation. Assignments of this recurrence to intramolecular vibrational modes of the acceptor and to modulation of the intermolecular donor-acceptor distance are discussed on the basis of a high-level density functional theory normal-mode analysis and previously observed wave packet dynamics of solvated molecular iodine. Nuclear relaxation of the acceptor induces sub-picosecond decay of the pump-probe polarization anisotropy from an initial value of 0.4 to an asymptotic value of -0.05. Electronic structure calculations suggest that relaxation along the torsional coordinate of the ethyl group is the origin of the anisotropy decay. Electric-field-resolved transient grating (EFR-TG) signal fields are obtained by spectral interferometry with a diffractive optic based interferometer. These measurements show that the signal phase and amplitude possess similar dynamics. Model calculations are used to demonstrate how the EFR-TG signal phase yields unique information on transient material resonances located outside the laser pulse spectrum. This effect can be rationalized in that the real and imaginary parts of the nonlinear polarization are related by the Kramers-Kronig transformation, which allows the dispersive component of the polarization response to exhibit spectral sensitivity over a larger frequency range than that defined by the absorption bandwidth.  相似文献   

18.
19.
Dielectric relaxation times are often interpreted in terms of the reorientation of dipolar species or aggregates. The relevant time correlation function contains, however, cross terms between dipole moments of different particles. In the static case, these cross terms are accounted for by the Kirkwood factor g(K). Theories and molecular dynamics simulations suggest that such cross correlations may also affect the time-dependent properties, as reflected in the dielectric spectra. We present an experimental method for detecting effects of such cross correlations in dielectric spectra by a comparative analysis of dielectric and magnetic relaxation data. We demonstrate that such collective contributions can substantially affect dielectric relaxation. Experiments for n-pentanol (g(K)=3.06 at 298 K) and 2,2-dimethyl-3-ethyl-pentane-3-ol (g(K)=0.59) and their solutions in carbon tetrachloride show that in systems with g(K)>1, the cross correlations slow down dielectric relaxation. In systems with g(K)<1, dielectric relaxation is enhanced. The results conform to theoretical predictions by Madden and Kivelson [Adv. Chem. Phys. 56, 467 (1984)] and to results of molecular dynamics simulations. The relaxation enhancement by cross terms in the case of g(K)<1 is difficult to rationalize by conventional models of dielectric relaxation.  相似文献   

20.
From relaxation investigations on the electric charge of the electrically polarized polymer, physical aspects of the effect of tri-basic lead sulphate, as a stabilizer, on the dielectric relaxation properties of PVC are considered. The results correlate with the established fact that tri-basic lead sulphate as a dispersion additive has a marked influence on the process of structure formation, changing the dielectric relaxation properties of the polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号