首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Li6[TeMo6O24] · 18 H2O is triclinic (space group P1 , a = 1 041.7(1), b = 1 058.6(1), c = 1 070.8(1) pm, α = 61.08(1), β = 60.44(1), γ = 73.95(1)°). Single crystal X-ray structure analysis (Z = 1, 295 K, 317 parameters, 3 973 reflections, Rg = 0.0250) revealed an infinite branched chain of edge-sharing Li coordination polyhedra to be the prominent structural feature. One of the four crystallographically independent Li+ is coordinated octahedrally. The coordination polyhedra of the remaining Li+ are distorted trigonal bipyramids. Only three unique oxygen atoms (O(9), O(10), O(12)) of the centrosymmetric [TeMo6O24]6? anion are bound to Li+. The further positions in the coordination spheres of the Li+ are occupied by water molecules. Intermolecular hydrogen bonds involve mainly oxygen atoms of the [TeMo6O24]6? anion as nearly equivalent proton acceptors without regard to their different bonding modes to Te and Mo, respectively. Li6[TeMo6O24] · Te(OH)6 · 18 H2O crystallizes monoclinically in space group P21/n with Z = 4, a = 994.1(3), b = 2 344.8(10), c = 1 764.9(4) pm, and β = 91.36(4)°. Single crystal structure analysis with least squares refinement of 627 parameters (5 900 reflections, 295 K) converged to Rg = 0.0324. There are six unique Li+ cations. The coordination polyhedra of Li(1), Li(2), Li(3), and Li(4) are linked by common edges to yield an eight membered centrosymmetric strand. The coordination polyhedra of the remaining two Li+ sites (Li(5), Li(6)) are connected to a dimeric unit via a common corner. All oxygen atoms of the Te(OH)6 molecule are involved in the coordination of Li+. However, only three oxygen atoms (O(13), O(18), O(23)) of the [TeMo6O24]6? anion which lacks crystallographic symmetry are involved in the coordination of Li+. The oxygen atoms of the anion act as proton acceptors in hydrogen bonds of predominantly medium strength. Te(OH)6 molecules and [TeMo6O24]6? anions connected by strong hydrogen bonds form an infinite chain.  相似文献   

2.
Two sulfato CuII complexes [Cu2(bpy)2(H2O)(OH)2(SO4)]· 4H2O ( 1 ) and [Cu(bpy)(H2O)2]SO4 ( 2 ) were synthesized and structurally characterized by single crystal X—ray diffraction. Complex 1 consists of the asymmetric dinuclear [Cu2(bpy)2(H2O)(OH)2(SO4)] complex molecules and hydrogen bonded H2O molecules. Within the dinuclear molecules, the Cu atoms are in square pyramidal geometries, where the equatorial sites are occupied by two N atoms of one bpy ligand and two O atoms of different μ2—OH groups and the apical position by one aqua ligand or one sulfato group. Through intermolecular O—H···O and C—H···O hydrogen bonds and intermolecular π—π stacking interactions, the dinuclear complex molecules are assembled into layers, between which the hydrogen bonded H2O molecules are located. The Cu atoms in 2 are octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two H2O molecules and two sulfato groups with the sulfato O atoms at the trans positions and are bridged by sulfato groups into 1[Cu(bpy)(H2O)2(SO4)2/2] chains. Through the interchain π—π stacking interactions and interchain C—H···O hydrogen bonds, the resulting chains are assembled into bi—chains, which are further interlinked into layers by O—H···O hydrogen bonds between adjacent bichains.  相似文献   

3.

Isotopes of hydrogen (3H, 2H) and oxygen (18O) are perfect candidates for groundwater tracers. A survey of isotopic composition of 34 groundwater samples and one Lake from Vojvodina region (Serbia) is presented here. Tritium activity concentration and stable isotope composition (δ2H, δ18O), as well as deuterium excess, were determined. The groundwater samples lie on the groundwater regression line. Minor deviations and a few lower deuterium excess values indicate waters recharged in a different climate regime and subjected to evaporation, respectively. According to the obtained results, most of the analyzed groundwater can be characterized as modern waters, recharged mostly from precipitation.

  相似文献   

4.
The structure of water clusters that have absorbed ethane molecules is studied by the molecular dynamics method. Structural analysis is performed by the construction of Voronoi polyheda for oxygen atoms and hybrid polyheda whose centers coincide with the centers of oxygen atoms and the faces are formed according to the positions of hydrogen atoms. The (H2O)20 cluster can retain no more than four ethane molecules remaining at the same time stable. When a water cluster adds more than four ethane molecules, the volumes of Voronoi polyheda acquire values close to the volume per molecule in the bulk liquid water. As the number of ethane molecules in a water cluster increases, the number of hydrogen atoms adjacent to oxygen, as well as the average number of units in cyclic formations composed of hydrogen atoms, also increases. In this case, the number of H-O-H angles formed by the nearest geometric neighbors close to 89° becomes dominant. The coefficient of nonsphericity reflecting the local arrangement of hydrogen atoms around the oxygen atoms decreases as the C2H6 molecules are added to water cluster and approaches to the value of this coefficient for the rhombic dodecahedron in the case of adsorption of six ethane molecules.  相似文献   

5.
Two supramolecular compounds (Hbipy)2[Cr(OH)6Mo6O18H](bipy) (1) and (Hbipy)3[Al(OH)6Mo6O18]·3H2O (2) were synthesized and their crystal structures were analyzed with x-ray diffraction technique. In 1 the Anderson anion with six hydroxyl groups forms six hydrogen bonds with bipy molecules, forming a supramolecular layer, the layers are linked by hydrogen bonds between anions. In 2 the Anderson anion with three hydroxyl groups and terminal/bridging oxygen atoms forms six hydrogen bonds with bipy molecules, and lattice water molecules and the anions form also hydrogen bonds, constructing a supramolecular architecture. The intensive emission in 650–740 nm of 1 is attributed to R-lines of Cr3+ and the high intensity may be caused by energy transfer of bipy molecules through hydrogen bonds. In contrast, 2 gives only the π* → π emission of bipy molecules at 460 nm.  相似文献   

6.
The crystal structure of Ba[Co(Cdta)]2 · 9H2O has been determined by X-ray diffraction. The crystals are monoclinic, a = 15.9415(10) Å, b = 7.8449(6) Å, c = 32.230(2) Å, β = 100.387(8)°, Z = 4, space group C2/c)). The cyclohexane-1,2-diaminetetraacetate ion forms the octahedral [Co(Cdta)]? complex through two donor nitrogen atoms and four oxygen atoms and is also connected to two barium atoms through oxygens. The Ba atoms are on a twofold axis. Its nearest environment comprises five O atoms of water molecules, one also being located on a twofold axis, and four O atoms of the four neighboring complex ions. This gives infinite layers parallel to the ab plane. All water molecules form hydrogen bonds within one layer.  相似文献   

7.
A new 1:2 inclusion complex of cucurbit[8]uril (CB[8]) and protonated N-phenylpiperazine was synthesized and characterized by 1H NMR and X-ray crystallography. The crystal structure showed that the phenyl rings of the two equivalents of guest encapsulated in the cavity of CB[8] are parallel to one another with a mean plane separation of 3.899 Å. In contrast, the piperazinyl phenyl ammonium moieties slightly protrude from the ureidyl carbonyl lined portals in order to accommodate the ion–dipole interaction between host and guest which provides a substantial driving force for the assembly. The oxygen atoms of the carbonyl groups form hydrogen bonds with the hydrogen atoms in both bridging methylene groups of CB[8] and water molecules. There are also hydrogen bonds formed among CB[8], water, and the protonated piperazinyl rings. These hydrogen bonds are formed between the ureidyl C=O groups and hydrogens in methylenes of piperazinyl rings; through hydrogen bonding N+–H···O(H)–H···O=C. The protonated piperazinyl rings connect the carbonyl groups with the bridging water molecules.  相似文献   

8.

The crystal of pentaqua (catena-pyridine-3,5-dicarboxylato-O,O) calcium(II) contain zigzag molecular chains composed of Ca ions linked by two bridging oxygen atoms, each donated by one carboxylate group [Ca-O1 2.353(2) Å, Ca-O3III 2.334(1) Å]. The Ca ions, the ligand molecules and one water oxygen atom coordinated by each metal ion [Ca-O5 2.410(2) Å] are coplanar. The coordination of the Ca ion is completed by four other water oxygen atoms situated above and below the plane of the chain [Ca-O6 2.475(1) Å, Ca-O7 2.371(2) Å]. The coordination number of the calcium(II) ion is seven. The water molecules act as donors in a system of hydrogen bonds.  相似文献   

9.
The recoil implantation yield of oxygen atoms recoiled from18O-enriched SiO2 layers into silicon substrates has been studied using the18O(p, α)15N nuclear reaction. The method to determine the number of oxygen atoms in silicon is described in detail and the results are compared to the theoretical predictions.  相似文献   

10.
The role of framework oxygen atoms in N2O decomposition [N2O(g)→N2(g) and 1/2O2(g)] over Fe‐ferrierite is investigated employing a combined experimental (N218O decomposition in batch experiments followed by mass spectroscopy measurements) and theoretical (density functional theory calculations) approach. The occurrence of the isotope exchange indicates that framework oxygen atoms are involved in the N2O decomposition catalyzed by Fe‐ferrierite. Our study, using an Fe‐ferrierite sample with iron exclusively present as FeII cations accommodated in the cationic sites, shows that the mobility of framework oxygen atoms in the temperature range: 553 to 593 K is limited to the four framework oxygen atoms of the two AlO4? tetrahedra forming cationic sites that accomodate FeII. They exchange with the Fe extra‐framework 18O atom originating from the decomposed N218O. We found, using DFT calculations, that O2 molecules facilitate the oxygen exchange. However, the corresponding calculated energy barrier of 87 kcal mol?1 is still very high and it is higher than the assumed experimental value based on the occurrence of the sluggish oxygen exchange at 553 K.  相似文献   

11.
The effects of chloride salts on the dissolution of cellobiose in aqueous solution were investigated using calorimetry and 1H NMR. The dissolution of cellobiose in salt solutions is a typical entropy-driven process. The activity of ZnCl2 and LiCl hydrated ions is enhanced as the hydration number decreases with increasing temperature. Zn2+ and Li+ hydrates can interact with the oxygen atoms at the O5 and O6 positions of cellobiose and associate with the Cl? anions, leading to the breakage of cellobiose hydrogen bonds. We found that the solubility of cellobiose in aqueous solutions is on the order of ZnCl2 > LiCl > NaCl > H2O > KCl > NH4Cl, which is consistent with the Hofmeister series. For the first time, we recognized the specific ionic effects of the Hofmeister series on the dissolution of cellobiose in salt aqueous solutions. This finding is helpful for understanding the dissolving mechanism of cellulose in aqueous solvents with salts and providing fundamental knowledge for finding and designing new cellulose solvents.  相似文献   

12.
Two energetic catalysts, 3,5-dinitro-2-pyridonate of lead (II) (Pb(2DNPO)2, 1) and 3,5-dinitro-4-pyridone-N-hydroxylate tetrahydrate of copper (II) (Cu(4DNPOH)2(H2O)4, 2) were characterized by elemental analysis, FT-IR, TG-DSC and structurally characterized by X-ray single-crystal diffraction analysis. X-ray powder diffraction analysis of complex 1 confirmed the phase homogeneity of the polycrystalline sample. Crystal data for 1: monoclinic, space group P 21/n, a = 8.5253(9), b = 9.2938(10), c = 19.654(2) Å, β = 102.289(2)°, V = 1521.6(3) Å3, Z = 4; 2: monoclinic, space group P 21/n , a = 8.3705(10), b = 9.9307(12), c = 10.5771(12) Å, β = 98.021(2)°, V = 870.62(18) Å3, Z = 2. The complex 1 is a one-dimensional coordination polymer with each Pb(II) atom being six-coordinated, forming a heavily distorted octahedral geometry, by two nitrogen and four oxygen donors. Each ligand links the Pb(II) ions in a chelating bridging mode using nitrogen and oxygen atoms of its pyridonate part. The complex 2 is a copper (II) complex with a compressed octahedral geometry. The Cu(II) atom locates on the equatorial positions defined by oxygen atoms of four water molecules. Its axial positions are filled with two oxygen donors of the pyridine-N-hydroxylate moieties of two ligands. The abundant hydrogen bonds link the molecules into one-dimensional chains. Both the complexes represent the first two examples of the energetic catalysts containing dinitropyridine derivatives characterized crystallographically  相似文献   

13.
The crystal structure determination of the title compounds showed that they are isomorphous, revealing the general formula [M(H2O)4(py)2](sac)2·4H2O. Their structures are built up of [M(H2O)4(py)2]2+ cations, saccharinato anions and non-coordinated water molecules. The metal atom lies on the inversion center and is octahedrally coordinated by four water oxygens and two pyridine nitrogen atoms. The crystal structure packing is achieved through the hydrogen bonds of Ow⋯Ow, Ow⋯O and Ow⋯N type. Coordinated water molecules are hydrogen bonded to non-coordinated ones at the same time participating in hydrogen bonding with carbonyl oxygen and nitrogen atom from the saccharinato anions. Non-coordinated water molecules participate in hydrogen bonding with the oxygen atoms belonging to the saccharinato CO and SO2 groups. The hydrogen bond network between the oxygen atoms belonging to the SO2 group of the saccharinato anions and one of the non-coordinated water molecules (OW3) constructs the centrosymmetric cavity in the structure.  相似文献   

14.
The molecular and crystal structure of the [La(NO3)3(H2O)2(2.2′-BiPy)]·1.5(2.2′-BiPy) compound is determined. The metal coordination polyhedron in the La(III) complex is formed from 10 donor atoms of O8N2: 6 oxygen atoms belong to three chelate-coordinated NO 3 ? anions, 2 oxygen atoms belong to two water molecules, and 2 nitrogen atoms belong to a bidentate bipyridine molecule coordinated in the neutral form. The structure is based on the metal complexes linked together in chains through the O(W)-H...O hydrogen bonds, in which oxygen atoms of the coordinated NO 3 ? anions act as acceptors. It is a framework structure, further stabilized by a system of O(W)-H...N and C-H...N hydrogen bonds, in which nitrogen atoms of the uncoordinated bipyridine molecules act as proton acceptors.  相似文献   

15.
Ca2[P4O12] · 4 H2O crystallizes in the monoclinic space group P21/n, a = 7.668, b = 12.895, c = 7.144 Å, β 107.00°, Dx = 2.28 g · cm?3, Z = 2. In the structure there are ringlike anions, which are composed of 4 PO4 tetrahedra connected by oxygen bridges. The Ca2+ are surrounded by 7 oxygen atoms. Each two cation polyhedra are connected by a common edge to pairs which are isolated from one another. The water molecules form hydrogen bridges with one another and with the anion rings.  相似文献   

16.
The ethylenediaminetetraacetate complex Li(H2O)3[Ga(Edta)] was synthesized and its crystal structure composed of octahedral (Ga(Edta) anions connected to the Li(H2O)3+ ion through the oxygen atom was studied. Five of the six hydrogen atoms of water molecules are involved in weak hydrogen bonds with the oxygen atoms of four Ga(Edta) complexes, the complex anion is hydrogen-bonded to five water molecules. In addition, shortened contacts C(221)–H(22A)…O(112) between the Ga(Edta) anions were found. As a result, the molecular packing in the crystal is determined by the three-dimensional lace of hydrogen bonds. The results are compared with published data for the lithium salts of Bi(III), Sb(III), Fe(III), Ni(II), and Hg(II) ethylenediaminetetraacetates.  相似文献   

17.
The freezing point of mixtures of H2 16O with H2 17O was measured as a function of the molal concentration. The freezing points rose linearly with increasing molal concentration above that of pure ordinary water, H2 16O, at 273.15 K. This confirms Kiyosawa's previous conclusion [K. Kiyosawa, J. Solution Chem. 20, 583 (1991).], drawn from findings on changes in the freezing point of mixtures of H2 16O with H2 18O or D2 16O that even a difference in the number of neutrons in the hydrogen or oxygen atoms of water molecules makes them behave as different entities with respect to the colligative properties of solutions. This has been confirmed to also occur in mixtures of H2 16O with H2 17O.  相似文献   

18.
The isomerizations preceding the metastable decompositions in the mass spectrometer of a number of [C6H12O]+˙ ions with the oxygen on the third carbon are characterized utilizing deuterium labeling. Hydrogens are transferred in these ions by three-, five- and six-membered ring rearrangements, with propensities determined by features of the individual reactions. Three-membered ring hydrogen transfers between α and β-carbons are preferred to all five-membered ring hydrogen transfers. However, six-membered ring hydrogen transfers take place to the apparent exclusion of three-membered ring hydrogen transfers to enol carbons when the products are of comparable stability. The low-energy [C6H12O]+˙ isomerizations characterized are predictable from the behavior of their lower homologs. It is concluded that the determinants of these reactions are the same as those of other highly reactive organic intermediates.  相似文献   

19.
Preparation and Crystal Structure of CrSO4 · 3 H2O Evaporating a solution of Cr2+ in dilute sulphuric acid at 70°C light blue crystals of CrSO4 · 3 H2O were grown. Its x-ray powder diffraction pattern is quite similar to that of CuSO4 · 3 H2O. The crystal structure refinement of CrSO4 · 3 H2O (space group Ce, a = 5.7056(8) Å, b = 13.211(2) Å, c = 7.485(1) Å, β = 96.73(1)°, Z = 4) from single crystal data, using the parameters of the copper compound as starting values, results in a final R-value of R = 3.8%. The surrounding of the Cr2+ ion can be described as a strongly elongated octahedron. The basal plane of the CrO6-octahedron consists of three hydrate oxygen atoms and one sulphate oxygen atom. The two more distant axial oxygen atoms also belong to sulphate groups. Thus they are forming chains of alterning CrO6-octahedra and SO4-tetrahedra along [110] and [1–10] linked via common corners. These chains are connected via sulphate groups and by bridging hydrogen bonds to a 3-dimensional network.  相似文献   

20.
In the title compound, [U(C9H4INO4S)O2(H2O)3]·2H2O, the asymmetric unit contains a UO22+ ion coordinated by the N and O atoms of a 7‐iodo‐8‐oxidoquinoline‐5‐sulfonate dianion (ferron anion) and three coordinated water molecules, and two uncoordinated water molecules. The UO22+ ion exhibits a seven‐coordinate pentagonal bipyramidal geometry. The usual sulfonate oxygen coordination is absent but the sulfonate O atoms, along with the coordinated and lattice water molecules, play a vital role in assembling the three‐dimensional structure via an extensive network of intermolecular O—H...O hydrogen bonds and π–π stacking interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号