首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
A vegetable oil (VO) was added to an emulsion of silicone oil in water (SO/W) with mixing limited to once turning the test tube upside down. Initially, the VO was dispersed into virtually centimeter-sized drops and the emulsion contained effectively no Janus drops, while after 1 h of agitation at a low level to prevent creaming, drops of 50–100-μm size of the two oils were observed: in addition to an insignificant number of Janus drops. The topology of the latter showed them to emanate from flocculated individual drops of the two oils, but with no discernible effect by the interfacial tension equilibrium on the drop topology. Continued gentle mixing gave increasing fraction of Janus drops of increased size with a topology gradually approaching the one expected from the interfacial equilibrium at the contact line. The spontaneous formation of Janus drops indicated a reduction of the interfacial free energy in the process and the interfacial energy difference between separate and Janus drops was calculated for an appropriate range of interfacial tensions and for all oil fractions. The calculations enabled a distinction of the decrease due to interfacial area changes from the reduction of interfacial tensions per se, with the latter only a minor fraction. Figure
?  相似文献   

3.
Using quantum chemical calculations and infrared multiphoton dissociation (IRMPD) spectroscopy in the fingerprint and X-H stretching regions, we demonstrate here that the all-Ala b 6 fragment ion features a macrocyclic structure with C2 symmetry. For this structure, the ionizing proton is equally shared by the Ala(1) and Ala(4) amide oxygens in a Zundel-type symmetric (X…H+…X) H-bond. Figure
?  相似文献   

4.
A radio frequency-free electromagnetostatic (EMS) cell devised for electron-capture dissociation (ECD) of ions has been retrofitted into the collision-induced dissociation (CID) section of a triple quadrupole mass spectrometer to enable recording of ECD product-ion mass spectra and simultaneous recording of ECD-CID product-ion mass spectra. This modified instrument can be used to produce easily interpretable ECD and ECD-CID product-ion mass spectra of tyrosine-phosphorylated peptides that cover over 50% of their respective amino-acid sequences and readily identify their respective sites of phosphorylation. ECD fragmentation of doubly protonated, tyrosine-phosphorylated peptides, which was difficult to observe with FT-ICR instruments, occurs efficiently in the EMS cell. Figure
?  相似文献   

5.
Hydrogen sulfide has recently been identified as a biologically responsive species. The design and synthesis of fluorescence probes, which are constructed with Nile-red or Nile-blue fluorophores and a fluorescence-controllable dinitrophenyl group, for hydrogen sulfide are reported in this paper. The Nile-red–dinitrophenyl-ether-group-based probe (1a) is essentially non-fluorescent because of the inhibition of the photo-induced electron-transfer process; when the dinitrobenzene moiety is removed by nucleophilic substitution with the hydrosulfide anion, probe 1a is converted into hydroxy Nile red, eliciting a H2S-induced fluorescence turn-on signal. Furthermore, probe 1a has high selectivity and sensitivity for the hydrosulfide anion, and its potential for biological applications was confirmed by using it for real-time fluorescence imaging of hydrogen sulfide in live HeLa cells. The Nile-blue–dinitrobenzene-based probe (1b) has gradually diminishing brightness in the red-emission channel with increased hydrogen-sulfide concentration. Thus, this paper reports a comparative study of Nile-red and Nile-blue-based hydrogen-sulfide probes. Graphical Abstract
?  相似文献   

6.
Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm employs an analytical approach to identify and remove artifacts from the data, decreasing the likelihood of false identifications in subsequent data processing. Following application of the algorithm, IMS-MS measurement sensitivity is greatly increased and artifacts that previously limited the utility of applying the Hadamard transform to IMS are avoided. Figure
?  相似文献   

7.
A new ambient ionization method allowing the direct chemical analysis of living human body by mass spectrometry (MS) was developed. This MS method, namely Megavolt Electrostatic Ionization Mass Spectrometry, is based on electrostatic charging of a living individual to megavolt (MV) potential, illicit drugs, and explosives on skin/glove, flammable solvent on cloth/tissue paper, and volatile food substances in breath were readily ionized and detected by a mass spectrometer. Figure
?  相似文献   

8.
The heating of electrospray ion source under atmospheric pressure is limited to the normal boiling point of the solution. The boiling takes place when the vapor pressure of the liquid at a given temperature equals the ambient pressure. By using a high pressure ESI source, which has been developed previously in our laboratory, a stable electrospray ionization of super-heated aqueous solution is performed up to a solution temperature of 180°C. The ion source is pressurized with pure nitrogen to a maximum pressure of 11 atm, and it is coupled to a commercial mass spectrometer via a custom-made ion transport capillary. A booster pump with variable pumping speed is added to the pumping system to regulate the pressure in the first pumping stage at 1?~?1.3 Torr. High pressure mass spectrometry is performed on several peptides and proteins to demonstrate its application in the temperature-controlled thermally induced denaturation and dissociation. Graphical Abstract
?  相似文献   

9.
10.
Laser desorption is an attractive technique for in situ sampling of organics on Mars given its relative simplicity. We demonstrate that under simulated Martian conditions (~2.5 Torr CO2) laser desorption of neutral species (e.g., polycyclic aromatic hydrocarbons), followed by ionization with a simple ultraviolet light source such as a discharge lamp, offers an effective means of sampling organics for detection and identification with a mass spectrometer. An electrodynamic ion funnel is employed to provide efficient ion collection in the ambient Martian environment. This experimental methodology enables in situ sampling of Martian organics with minimal complexity and maximum flexibility. Figure
?  相似文献   

11.
Characterization and optimization studies of N-methyl-4-hydrazino-7-nitrobenzofurazan (MNBDH) as a new fluorogenic substrate in the peroxidation reaction catalyzed by DNAzyme are reported. The effects of pH, H2O2 concentration, metal-cation type, and the concentration and type of surfactant on the fluorescence intensity were investigated. The optimized reaction was subsequently used for the development of an assay for DNA detection based on a molecular-beacon probe. The use of a fluorogenic substrate enabled the detection of a single-stranded DNA target with a 1 nmol L?1 detection limit. Graphical Abstract
?  相似文献   

12.
The Gd-, Tb-, and Ho-doped W-type hexagonal ferrite Ba0.85RE0.15Co2Fe16O27 was fabricated by a facile route of low-temperature sol–gel self-propagating combustion. Furthermore, a combination of dielectric loss phase polyaniline and magnetic loss phase Ba0.85RE0.15Co2Fe16O27 as the microwave absorber in a core-shell architecture has been synthesized. The effect of different lanthanide ions Gd, Tb, and Ho on their microstructure, static magnetic properties, electromagnetic properties, and microwave reflection loss have been systematically studied. Our results show that the Ho-doped ferrite has the low microstructure parameters (a, c, and V) and high saturation magnetization (Ms) attributed to its ionic radius and magnetic moment. Moreover, it was found that the Ho-doped composite exhibited excellent microwave absorbing property with a minimum reflection loss (RL) of about ?15.1 dB at 9.4 GHz. The reflection loss of composite increases up to almost triple upon the combination of polyaniline and doped ferrite. Such lightweight and highly effective absorbers via combining the organic and inorganic phase into a core-shell architecture are highly desirable for microwave absorber in various applications. Figure
The synthesis and properties of the PANI/REBF composites  相似文献   

13.
This article provides a condensed introduction to principles of chiral separation, gives a historic overview of the genesis of the most important concepts regarding chiral stationary phase (CSPs), and summarizes the state of the art in a concise manner. Some recent developments in the field of polysaccharide CSPs are outlined. Finally, the article focusses on the new concept of zwitterionic chiral stationary phases and their application profile and peculiarities. Some other trends in column technology, including sub-2 μm and core–shell CSP particles and the emerging field of (UP)SFC, are briefly discussed. Figure
?  相似文献   

14.
Since the emergence of lab-on-a-chip technology, a variety of chemical and biochemical assays were successfully implemented on microdevice platforms. Among the chip-based applications, genetic analysis based on the polymerase chain reaction (PCR) has been extensively developed in order to accomplish the goal of cheap, rapid, high-throughput, and point-of-care DNA testing. We are summarizing here several formats of the miniaturized PCR systems including the integration of units for sample pretreatment and downstream analytical detection. The various sections cover (a) miniaturized PCR systems, (b) integrated sample pretreatment-PCR microsystems, (c) integrated PCR-detection microsystems, and (d) integrated sample pretreatment-PCR-detection microsystems. Respective microdevices were successfully introduced recently in the form of a fully integrated microsystem for genetic analysis with sample-in-answer-out capability. Contains 120 references. Figure
?  相似文献   

15.
Characterization of therapeutic drugs is a crucial step in drug development in the biopharmaceutical industry. Analysis of protein therapeutics is a challenging task because of the complexities associated with large molecular size and 3D structures. Recent advances in hydrogen/deuterium-exchange mass spectrometry (HDX-MS) have provided a means to assess higher-order structure of protein therapeutics in solution. In this review, the principles and procedures of HDX-MS for protein therapeutics characterization are presented, focusing on specific applications of epitope mapping for protein–protein interactions and higher-order structure comparison studies for conformational dynamics of protein therapeutics. Figure
HDX of protein backbone amide hydrogen  相似文献   

16.
A kiloelectronvolt beam of helium ions is used to ionize and fragment precursor peptide ions starting in the 1+ charge state. The electron affinity of helium cations (24.6 eV) exceeds the ionization potential of protonated peptides and can therefore be used to abstract an electron from—or charge exchange with—the isolated precursor ions. Kiloelectronvolt energies are used, (1) to overcome the Coulombic repulsion barrier between the cationic reactants, (2) to overcome ion-defocussing effects in the ion trap, and (3) to provide additional activation energy. Charge transfer dissociation (CTD) of the [M+H]+ precursor of Substance P gives product ions such as [M+H]2+? and a dominant series of a ions in both the 1+ and 2+ charge states. These observations, along with the less-abundant a + 1 ions, are consistent with ultraviolet photodissociation (UVPD) results of others and indicate that C–Cα cleavages are possible through charge exchange with helium ions. Although the efficiencies and timescale of CTD are not yet suitable for on-line chromatography, this new approach to ion activation provides an additional potential tool for the interrogation of gas phase ions. Graphical Abstract
?  相似文献   

17.
The detection of regulated and forbidden herbs in pharmaceutical preparations and nutritional supplements is a growing problem for laboratories charged with the analysis of illegal pharmaceutical preparations and counterfeit medicines. This article presents a feasibility study of the use of chromatographic fingerprints for the detection of plants in pharmaceutical preparations. Fingerprints were developed for three non-regulated common herbal products—Rhamnus purshiana, Passiflora incarnata L. and Crataegus monogyna—and this was done by combining three different types of detection: diode-array detection, evaporative light scattering detection and mass spectrometry. It is shown that these plants could be detected in respective triturations of the dry extracts with lactose and three different herbal matrices as well as in commercial preparations purchased on the open market.
Figure
Detection of Passiflora incarnata in three commercial preparations using chromatographic fingerprints  相似文献   

18.
A new method for measuring the ion velocity distribution using an internal matrix-assisted laser desorption/ionization (MALDI) source Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer is described. The method provides the possibility of studying ion velocities without any influence of electric fields in the direction of the instrument axis until the ions reach the ICR cell. It also allows to simultaneously account for and to estimate not only the velocity distribution but the angular distribution as well. The method was demonstrated using several types of compounds in laser desorption/ionization (LDI) mode. Graphical Abstract
?  相似文献   

19.
Paul trap working in the second stability region has long been recognized as a possible approach for achieving high-resolution mass spectrometry (MS), which however is still far away from the experimental implementations because of the narrow working area and inefficient ion trapping. Full understanding of the ion motional behavior is helpful for solving the problem. In this article, the ion motion in a superimposed octopole field, which was characterized by the nonlinear Mathieu equation, was solved analytically using Poincare-Lighthill-Kuo (PLK) method. This method equivalently described the nonlinear disturbance by an effective quadrupole field with perturbed Mathieu parameters, a u and q u , which would bring huge convenience in the studies of nonlinear ion dynamics and was, therefore, used for rapid evaluation of the nonlinear effects of ion motion. Fourth-order Runge-Kutta method (4th R-K) indicated the error of PLK for characterizing the frequency shift of ion motion was within 15%. Figure
?  相似文献   

20.
Amino acids represent a fraction of organic matter in marine and freshwater ecosystems, and a source of carbon, nitrogen and energy. l-Amino acids are the most common enantiomers in nature because these chiral forms are used during the biosynthesis of proteins and peptide. To the contrary, the occurrence of d-amino acids is usually linked to the presence of bacteria. We investigated the distribution of l- and d-amino acids in the lacustrine environment of Terra Nova Bay, Antarctica, in order to define their natural composition in this area and to individuate a possible relationship with primary production. A simultaneous chromatographic separation of 40 l- and d-amino acids was performed using a chiral stationary phase based on teicoplainin aglycone (chirobiotic tag). The chromatographic separation was coupled to two different mass spectrometers—an LTQ-Orbitrap XL (Thermo Fisher Scientific) and an API 4000 (ABSciex)—in order to investigate their quantitative performance. High-performance liquid chromatography coupled with mass spectrometry methods were evaluated through the estimation of their linear ranges, repeatability, accuracy and detection and quantification limits. The high-resolution mass spectrometer LTQ-Orbitrap XL presented detection limits between 0.4 and 7 μg?l ?1, while the triple quadrupole mass spectrometer API 4000 achieved the best detection limits reported in the literature for the quantification of amino acids (between 4 and 200 ng?l ?1). The most sensitive method, HPLC-API 4000, was applied to lake water samples. Figure
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号