首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
MX-80 bentonite was detected using acid-based titration, XRD and FTIR in detail. The sorption behavior of 63Ni(Ⅱ) from aqueous solution to MX-80 bentonite was investigated as a function of solid content, ionic strength and pH by using batch technique. The experimental data of 63Ni(Ⅱ) sorption on MX-80 bentonite was obtained using the diffuse layer model (DLM) with the aid of FITEQL 3.1 program. The results indicated that the sorption of 63Ni(Ⅱ) on MX-80 bentonite was mainly dominated by surface complexation...  相似文献   

2.
MX-80 bentonite was characterized by XRD and FTIR in detail. The sorption of Th(IV) on MX-80 bentonite was studied as a function of pH and ionic strength in the presence and absence of humic acid/fulvic acid. The results indicate that the sorption of Th(IV) on MX-80 bentonite increases from 0 to 95% at pH range of 0–4, and then maintains high level with increasing pH values. The sorption of Th(IV) on bentonite decreases with increasing ionic strength. The diffusion layer model (DLM) is applied to simulate the sorption of Th(IV) with the aid of FITEQL 3.1 mode. The species of Th(IV) adsorbed on bare MX-80 bentonite are consisted of “strong” species o \textYOHTh4 + \equiv {\text{YOHTh}}^{4 + } at low pH and “weak” species o \textXOTh(OH)3 \equiv {\text{XOTh(OH)}}_{3} at pH > 4. On HA bound MX-80 bentonite, the species of Th(IV) adsorbed on HA-bentonite hybrids are mainly consisted of o \textYOThL3 \equiv {\text{YOThL}}_{3} and o \textXOThL1 \equiv {\text{XOThL}}_{1} at pH < 4, and o \textXOTh(OH)3 \equiv {\text{XOTh(OH)}}_{3} at pH > 4. Similar species of Th(IV) adsorbed on FA bound MX-80 bentonite are observed as on FA bound MX-80 bentonite. The sorption isotherm is simulated by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models, respectively. The sorption mechanism of Th(IV) on MX-80 bentonite is discussed in detail.  相似文献   

3.
Summary Sorption of radionuclides onto surrounding rocks play an important role in retarding the migration of radionuclides from a radioactive waste repository. The sorption isotherm model is usually used to describe the sorption behaviors and assess the sorption potential of radionuclides on rock. However, most of the studies to investigate the feasibility of isotherm models for the sorption of radionuclides are based on the assumption that the sorption energy is uniform and homogeneously distributed on the sorbent surfaces. In this study, two heterogeneity-based isotherms, Langmuir-Freundlich isotherm model (LF) and generalized-Freundlich isotherm model (GF), were used for the evaluation of the sorption characteristics of cesium on the selected Taiwan tuff and basalt. The sorption experiments in this study were carried out by batch method, and the experimental data were modeled by LF and GF heterogeneity-based isotherm models. The results showed that both of the LF and GF models could fit the data more perfectly than the Langmuir model. The heterogeneity of sorption onto tuff and basalt could be well characterized by the LF and GF models by means of the calculation and plotting of the affinity spectrum. The results showed that the sorption surface of tuff is more heterogeneous and complex than that of basalts.  相似文献   

4.
It plays a very important role for characterizing sorption behaviors of cesium (Cs) and selenium (Se) on Taiwanese mudrocks to retard the migration of radionuclides from a radioactive waste repository. In this study, two non-linear heterogeneity-based isotherms, Langmuir–Freundlich model (LF) and generalized-Freundlich model (GF), were applied for the evaluation of the sorption characteristics of Cs and Se on Taiwanese mudrocks. The batch sorption experiments were carried out and the experimental data were simulated by LF and GF heterogeneity-based isotherm models. In addition, the results showed that both of the LF and GF models could fit the experimental data more perfectly than the Langmuir one. The heterogeneity of sorption behaviors for Cs and Se could be well characterized by the LF and GF models from the root mean square error calculation and plot of the affinity spectrum. The results demonstrated that the sorption mechanism of Cs and Se on mudrock is quite different and Cs sorption is more heterogeneous and complicated than that in Se.  相似文献   

5.
The ability of the back-fill and the host rock materials to take up radioisotopes like 241Am, 85,89Sr and 137Cs has been examined as a function of contact time, pH, amount of sorbent, sorbate concentration, and the presence of complementary cations. A batch technique using actual borehole water from the granite formation has been utilized. In general, the uptake of nuclides by bentonite is much higher than that with granite. The sorption order of nuclides on bentonite is Am>Cs>Sr. The presence of complementary cations, Na+, K+, Ca2+ and Mg2+ depresses the sorption of Cs and Sr on bentonite. The sorption data have been interpreted in terms of Freundlich and Langmuir isotherm equations. Utilizing the Langmuir isotherm equation, the monolayer capacity, V m ,and the binding constant, K, have been evaluated. The change in free energy for the sorption of nuclides on bentonite has also been calculated.  相似文献   

6.
The development of nuclear power releases large amounts of radionuclides into the natural environment. Herein, the sorption of radionuclide 63Ni on bentonite from Gaomiaozi county (Inner Mongolia, China) at different experimental conditions such as pH, contact time, ionic strength, foreign cations and anions, and temperatures were investigated by using batch technique. The results indicated that the sorption of 63Ni on the bentonite was quickly at first contact time and then increased slowly with increasing contact time. The sorption of 63Ni was strongly dependent on ionic strength at low pH values and independent of ionic strength at high pH values. The sorption of 63Ni on bentonite was mainly dominated by outer-sphere surface complexation or ion exchange at low pH values, whereas inner-sphere surface complexation was the main sorption mechanism at high pH values. The Langmuir, Freundlich, and D–R models were applied to simulate the sorption isotherms of 63Ni at three different temperatures, and the thermodynamic parameters (i.e., ΔH°, ΔS° and ΔG°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of 63Ni on bentonite was an endothermic and spontaneous process. Experimental results indicate that the bentonite is a suitable material for the preconcentration and solidification of 63Ni from large volume of solutions in radionickel pollution cleanup.  相似文献   

7.
The sorption behavior of cesium on zeolite and bentonite minerals and their mixtures was studied by means of a batch method and a tracer technique. All experiments were carried out in the presence of CsCl spiked with 137Cs and NaCl as a supporting electrolyte in varying concentrations. The distribution coefficients (K D) did not show significant differences at low Cs+ loadings while they decreased in the high loading region. Freundlich and D-R isotherms were applied to the adsorption data of zeolite and bentonite. Adsorption capacities and mean energies calculated from D-R isotherm parameters decreased by increasing ionic strength on both minerals. The identification of the specific uptake sites was attempted on the basis of the Freundlich isotherm. Experimentally observed distribution coefficients of Cs on two mineral mixtures were smaller than theoretically calculated values, except at the highest NaCl concentration.  相似文献   

8.
A new corrosion inhibitor, namely acid extract of leaves of Hibiscus sabdariffa, has been synthesized, and its inhibiting action on the corrosion of mild steel in acidic bath (1.2 N HCl and 1.2 N H2SO4) has been investigated by corrosion-monitoring techniques. The results of the present study show that this compound has decent inhibiting property for mild steel corrosion in 1.2 N H2SO4 than 1.2 N HCl. Four sorption isotherms are tested for the data, namely Langmuir, Frumkin, Florry–Huggins, and Langmuir–Freundlich isotherms; of these the Langmuir isotherm fits the data well having correlation coefficient over 0.99 in both the acid environments.  相似文献   

9.
Batch sorption experiments were performed to remove Eu(III) ions from aqueous solutions by using attapulgite under ambient conditions. Different experimental conditions, such as contact time, solid content, foreign ions, pH, ionic strength, fulvic acid and temperature, have been investigated to study their effect on the sorption property. The results indicated that the sorption of Eu(III) onto attapulgite was strongly dependent on pH, ionic strength and temperature. The sorption increased from about 8.9 to 90% at pH ranging from 2 to 6 in 0.01 mol/L NaNO3 solution. The Eu(III) kinetic sorption on attapulgite was fitted by the pseudo-second-order model better than by the pseudo-first-order model. The sorption of Eu(III) onto attapulgite increased with increasing temperature and decreasing ionic strength. The Langmuir and Freundlich models were used to simulate the sorption isotherms, and the results indicated that the Freundlich model simulated the data better than the Langmuir model. The thermodynamic parameters (∆G o, ∆S o, ∆H o) were determined from the temperature dependent isotherms at 298.15, 318.15 and 338.15 K, and the results indicated that the sorption reaction was an endothermic and spontaneous process. The results suggest that the attapulgite is a suitable material as an adsorbent for preconcentration and immobilization of Eu(III) from aqueous solutions.  相似文献   

10.
In this study, a local bentonite from Gaomiaozi county (Inner Mongolia, China) was converted to Na-bentonite and was characterized by FTIR and XRD to determine its chemical constituents and micro-structure. The removal of cobalt from aqueous solutions by Na-bentonite was investigated as a function of contact time, pH, ionic strength, foreign ions and temperature by batch technique under ambient conditions. The results indicated that the sorption of Co(II) was strongly dependent on pH. At low pH, the sorption of Co(II) was dominated by outer-sphere surface complexation or ion exchange whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir, Freundlich, and D-R models were used to simulate the sorption isotherms of Co(II) at the temperatures of 293.15, 313.15 and 333.15 K, respectively. The thermodynamic parameters (∆, ∆, ∆) of Co(II) sorption on GMZ bentonite calculated from the temperature-dependent sorption isotherms indicated that the sorption of Co(II) on GMZ bentonite was an exothermic and spontaneous process. The Na-bentonite is a suitable material for the preconcentration and solidification of Co(II) from aqueous solutions.  相似文献   

11.
Surfactant-modified bentonite was synthesized by replacing adsorbed Na+ with long-chain alkyl quaternary ammonium cation, hexadecyltrimethylammonium bromide (HDTMAB). The sorption isotherms of phenol, p-chlorophenol, and 2,4-dichlorophenol were modeled according to the Langmuir and Freundlich equations. The Langmuir isotherm was found to describe the equilibrium adsorption data well. The mechanisms and characteristics of sorption of these ionizable organic contaminants onto surfactant-modified bentonite from water were investigated systematically and described quantitatively. The sorption properties are affected by the treatment conditions, such as amount of organobentonite, and the properties of organic compounds. Results indicated that adsorption of phenols from water was in proportion to their hydrophobicities, which increased with chlorine addition (phenol相似文献   

12.
A new biosorbent has been prepared by coating Chrysophyllum albidum (Sapotaceae) seed shells with chitosan and/or oxidizing agents such as sulfuric acid. This study investigated the technical feasibility of activated and modified activated C. albidum seed shells carbons for the adsorption of chromium(VI) from aqueous solution. The sorption process with respect to its equilibria and kinetics as well as the effects of pH, contact time, adsorbent mass, adsorbate concentration and particle size on adsorption was also studied. The most effective pH range was found to be between 4.5 and 5 for the sorption of the metal ion. The pseudo-first-order rate equation by Lagergren and pseudo-second-order rate equation were tested on the kinetic data, the adsorption process followed pseudo-second-order rate kinetics, also, isotherm data was analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherms, the Freundlich and Langmuir models for dynamics of metal ion uptake proposed in this work fitted the experimental data reasonably well. However, equilibrium sorption data were better represented by Langmuir model than Freundlich. The adsorption capacity calculated from Langmuir isotherm was 84.31, 76.23 and 59.63 mg Cr(VI)/g at initial pH of 3.0 at 30 °C for the particle size of 1.00–1.25 mm with the use of 12.5, 16.5 and 2.1 g/L of CACASC, CCASC and ACASC adsorbent mass, respectively. This readily available adsorbent is efficient in the uptake of Cr(VI) ion in aqueous solution, thus, it could be an excellent alternative for the removal of heavy metals and organic matter from water and wastewater.  相似文献   

13.
Sorption of thorium (IV) on goethite was investigated as a function of contact time, pH, ionic strength, anions, solid-to-liquid ratio (m/V) and Th(IV) concentration using batch technique. The results showed that the sorption of Th(IV) was strong pH-dependence, and increased from ~10 to ~100% over the pH range of 2.0–4.0, and then kept a constant level in the higher pH range. The sorption of Th(IV) increased with increasing m/V and independent of ionic strength. It was clear that phosphate and FA significantly enhanced Th(IV) sorption on goethite. The sorption and desorption isotherms were investigated at pH 2.90 ± 0.05 and analyzed with Freundlich and Langmuir models, respectively. Compared to Langmuir model, Freundlich model could fit the experimental data better, according to the high relative coefficients.  相似文献   

14.
The sorption of Co(II) on Na-attapulgite as a function of contact time, solid content, pH, ionic strength, foreign ions, fulvic acid (FA) and temperature under ambient conditions was studied. The kinetic of Co(II) sorption on Na-attapulgite was described well by pseudo-second-order model. The sorption of Co(II) on Na-attapulgite was strongly dependent on pH and ionic strength. The sorption of Co(II) was mainly dominated by outer-sphere surface complexation and/or ion exchange at low pH, whereas inner-sphere surface complexation or surface precipitation was the main sorption mechanism at high pH values. The presence of FA did not affect Co(II) sorption obviously at pH <7, and a negative effect was observed at pH >7. The Langmuir and Freundlich models were used to simulate the sorption data at different temperatures, and the results indicated that the Langmuir model simulated the data better than the Freundlich isotherm model. The thermodynamic parameters (∆G°, ∆S°, ∆H°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Co(II) on Na-attapulgite was an endothermic and spontaneous process. The results suggest that the attapulgite sample is a suitable material in the preconcentration and solidification of radiocobalt from large volumes of aqueous solutions.  相似文献   

15.
Herein, the sorption properties of Eu(III) on Na-attapulgite were performed by using batch sorption experiments under different experimental conditions, such as contact time, pH, ionic strength, humic acid and temperatures. The results indicated that the sorption of Eu(III) on Na-attapulgite was strongly dependent on pH and temperature. At low pH values, the sorption of Eu(III) was influenced by ionic strength, whereas the sorption was not affected by ionic strength at high pH values. The sorption of Eu(III) was mainly dominated by ion exchange or outer-sphere surface complexation at low pH values, and by inner-sphere surface complexation or surface precipitation at high pH values. The sorption of Eu(III) onto Na-attapulgite increased with increasing temperature. The Langmuir and Freundlich models were applied to simulate the sorption isotherms, and the results indicated that the Langmuir model simulated the sorption isotherms better than the Freundlich model. The thermodynamic parameters (∆G o, ∆S o, ∆H o) were calculated from the temperature dependent sorption isotherms at 293, 313 and 333 K, respectively, and the results indicated that the uptake of Eu(III) on Na-attapulgite was an endothermic and spontaneous process. The results of high Eu(III) sorption capacity on Na-attapulgite suggest that the attapulgite is a suitable material for the preconcentration and immobilization of Eu(III) ions from large volumes of aqueous solutions.  相似文献   

16.
The sorption mechanism of Al3+ on chelating resins by means of mathematical analysis of sorption isotherms using nonlinear mean square software was studied. This method should yield more detailed information than classical thermodynamics and should be more flexible than the statistical-mechanical method, so that it would make it possible to obtain fairly easily relations directly applicable in practice. This model defined the specific potential ΦAlR for the ion in a resin (which depends on properties of resin and ion). On the basis of this model, N and PO isotherms were derived. To study the sorption mechanism, the Freundlich, Langmuir, N and PO equations (models) of isotherms were used. It was estimated that the functional groups (8-hydroxyquinoline and salicylate) in the studied chelating resins influence ΦAlR and thus their mechanism and sorption capacity.  相似文献   

17.
High-pressure sorption (up to 50 atm) for CO2, N2, and Ar in poly(vinyl benzoate) (PVB) was studied at temperatures from 25 to 70°C by a gravimetric method utilizing an electromicrobalance. The results are described by Henry's law above the glass transition temperature Tg for all gases. The dual-mode sorption model, Henry's law plus a Langmuir isotherm, applies to the sorption isotherms of N2 and Ar in the glassy state, and the dual-mode parameters are given. For CO2, a new type of sorption isotherm is observed below Tg. The isotherm is concave to the pressure axis in the low-pressure region and turns into a straight line with increasing CO2 pressure which can be extrapolated back to the coordinate origin. The linear part of the isotherm is characteristic of the rubbery state, while the nonlinear part stems from glassystate behavior. The “glass transition solubility” of CO2, at which PVB film changes from the glassy to the rubbery state, decrease as the temperature increases. The disappearance of microvoids, that is, the decrease of the Langmuir capacity, may be due to a large plasticizing effect of sorbed CO2. The difference between the N2 and Ar isotherms and the CO2 isotherm is discussed from this standpoint.  相似文献   

18.
Batch sorption experiments have been carried out to remove natural uranium (NORM) from water obtained together with crude oil and natural gas, using Algerian bentonites. The effect of some important factors such as S/L ratio, pH, initial concentration, particle size was evaluated and a kinetic study performed. The value of the distribution coefficient (K d) at equilibrium for natural uranium varied from 30 to 600 cm3·g−1 and 50 to 1100 cm3·g−1 (∼10% margin error) using natural bentonite and drilling bentonite, respectively. The isotherms showed that the data are consistent with both Freundlich and Langmuir models.  相似文献   

19.
Equilibrium removal of three substituted nitrophenols, namely 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), and 2,4-dinitrophenol (2,4-DNP), by adsorption on yellow bentonite was tested. The batch kinetic data are described by the pseudo-first order, pseudo-second order, and intraparticle diffusion models. Results show that chemisorption processes could be rate limiting in the sorption step. The adsorption equilibrium was modelled by the Langmuir and Freundlich equations. The Langmuir model better represents the equilibrium isotherm data for 2-NP, 4-NP, and 2,4-DNP uptake on yellow bentonite. 4-NP is adsorbed in larger amounts than the disubstituted nitrophenol. Uptake of nitrophenols increases in the order 2-NP < 2,4-DNP < 4-NP.  相似文献   

20.
Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite   总被引:16,自引:0,他引:16  
The adsorption of two dyes, namely, Acid Red 57 (AR57) and Acid Blue 294 (AB294), onto acid-activated bentonite in aqueous solution was studied in a batch system with respect to contact time, pH, and temperature. Acidic pH was favorable for the adsorption of these dyes. The surface characterization of acid-activated bentonite was performed using the FTIR technique. The pseudo-first-order and pseudo-second-order kinetic models and the intraparticle diffusion model were used to describe the kinetic data and the rate constants were evaluated. The dynamic data fitted the pseudo-second-order kinetic model well and also followed the intraparticle diffusion model up to 90 min, but diffusion is not the only rate controlling step. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The Freundlich model agrees very well with experimental data. The activation energies of adsorption were also evaluated for the adsorption of AR57 and AB294 onto activated bentonite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号