首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
Within the Stokes film approximation, unsteady spreading of a thin layer of a heavy viscous fluid along a horizontal superhydrophobic surface is studied in the presence of a given localized mass supply in the film. The forced (induced by the mass supply) spreading regimes are considered, for which the surface tension effects are insignificant. Plane and axisymmetric flows along the principal direction of the slip tensor of the superhydrophobic surface are studied, when the corresponding slip tensor component is either a constant or a power function of the spatial coordinate, measured in the direction of spreading. An evolution equation for the film thickness is derived. It is shown that this equation has self-similar solutions of a source type. The examples of self-similar solutions are constructed for power and exponential time dependences of mass supply. In the final part of the paper, some of the solutions constructed are generalized to the case of a weak dependence of the flow on the second spatial coordinate, caused by a slight variability of the slip coefficient in the direction normal to that of spreading. The constructed self-similar solutions can be used for experimental determination of the parameters important for hydrodynamics, e.g. the slip tensor components of commercial superhydrophobic surfaces.  相似文献   

2.
The present work describes a numerical procedure to simulate the development of hydrodynamic entry region in a gravity-driven laminar liquid film flow over an inclined plane. It provides a better insight into the physics of developing film in entry region. A novel numerical approach is proposed which has the potential to provide solutions for the complex physics of liquid film spreading on solid walls. The method employs an incompressible flow algorithm to solve the governing equations, a PLIC-VOF method to capture the free surface evolution and a continuum surface force (CSF) model to include the effect of surface tension. To account for the moving contact line on the solid substrate, a precursor film model based wall treatment is implemented. Liquid film flow has been simulated for the Reynolds number range of 5 ≤ Re ≤ 37.5, and the predicted results are found to agree well with the available analytical and experimental data.  相似文献   

3.
Experiments with transmission electron microscopy have shown that in a strong electron beam the contrast of dislocations may gradually disappear at an incoherent interface between a metal thin film and an amorphous substrate. There are reasons to believe that this phenomenon is caused by radiation-induced dislocation core spreading at the interface. A quantitative model accounting for this effect will be necessary for a better understanding of dislocation structures and plastic deformation in metal thin films. As a first step toward this objective, we develop a number of mathematical solutions for dislocation core spreading at an incoherent interface. For simplicity, we consider screw dislocations, and consider the interface to be characterized by a shear adhesive strength, τ0, below which no core spreading occurs, and above which spreading takes place in a viscous manner. We determine the final equilibrium core width and the rate of core spreading for single or planar arrays of dislocations in a homogeneous bulk material or at the interface between a thin film and a semi-infinite substrate where the film and substrate may have the same, or different, elastic constants. Some of our solutions are analytic and others are based on an implicit finite difference method with a Gauss-Chebyshev quadrature scheme. The phenomenon of dislocation core spreading is expected to have a dramatic effect on the strength of crystalline films deposited on amorphous substrates.  相似文献   

4.
This letter presents an analytical solution to the hydrodynamic lubrication of a circular point contact sliding over a flat surface with cavitation. The solution is found by solving the Reynolds equation with Reynolds boundary condition for cavitation. The cavitation boundary is shown to be straight lines directed 108.4° against the sliding direction. The result is experimentally verified in the limit of large values of viscosity, sliding velocity and radius of a spherical ball. The solution raises questions about the coupling between cavitation and film rupture and can be used as an independent check on the validity of numerical solutions.  相似文献   

5.
6.
Frictionless normal indentation problem of rigid flat-ended cylindrical, conical and spherical indenters on piezoelectric film, which is either in frictionless contact with or perfectly bonded to an elastic half-space (substrate), is investigated. Both conducting and insulating indenters are considered. With Hankel transform, the general solutions of the homogeneous governing equations for the piezoelectric layer and the elastic half-space are presented. Using the boundary conditions for a vertical point force or a point electric charge, and the boundary conditions on the film/substrate interface, the Green’s functions can be obtained by solving sets of simultaneous linear algebraic equations. The solution of the indentation problem is obtained by integrating these Green’s functions over the contact area with unknown surface tractions or electric charge distribution, which will be determined from the boundary conditions on the contact surface between the indenter and the film. The solution is expressed in terms of dual integral equations that are converted to a Fredholm integral equation of the second kind and solved numerically. Numerical examples are also presented. The comparison between two film/substrate bonding conditions is made. It shows that the indentation rigidity of the film/substrate system is lower when the film is in frictionless contact with the substrate. The effects of the Young’s modulus and Poisson’s ratio of the elastic substrate, indenter electrical condition and indenter prescribed electric potential on the indentation responses are presented.  相似文献   

7.
The paper presents a solution to a delamination problem of an infinite elastic film resting on a rigid substrate and loaded by a monotonically increasing in-plane point force. A?rigid-slip contact is assumed between the film and the substrate, leading to the development of two regions at the interface: a damaged zone with a relative slip between the materials, and a region where the interface remains intact. Both film natural and essential boundary conditions are zero on the boundary between these two interfacial zones with the shape of the boundary being a part of the solution. Problem??s self-similarity enables us to obtain an approximate distribution of interfacial traction within the delaminated zone and a shape of the zone itself. For film??s Poisson??s ratio ??=?1 the approximate solution becomes exact. It is argued that this can be treated as a special case of a rigid film sliding on a rigid substrate. The presented approach can be used to obtain approximate closed-form solutions to similar delamination problems.  相似文献   

8.
Lekue  Jagoba  Dörner  Florian  Schindler  Christian 《Meccanica》2021,56(12):3097-3106

This article presents the latest of a series of research activities aimed to determine the deviation originated when Prescale pressure measurement film is used to measure the size and shape of the wheel-rail contact area. Despite being an attractive solution due to the simplicity of the measurement procedure, it is well known that the contact interaction is altered by the presence of the film. Consequently, characterizing and filtering out the systematic measurement error is a fundamental requirement for accurate quantitative assessments. Nevertheless, the complexity of the wheel-rail contact problem, which lacks an analytical solution, hinders the direct determination of correction values. The approach presented here builds on error corrections for simpler Hertzian geometries to calibrate a film model for further use in the wheel-rail contact scenario. The results highlight the marked dependency of the measurement error on wheel and rail roughness and underline the importance of including the film into finite element models that are validated by comparison with experimental observations.

  相似文献   

9.
Boundary film shear elastic modulus effect is analyzed in a hydrodynamic contact. The contact is one-dimensional composed of two parallel plane surfaces, which are, respectively, rough rigid with rectangular micro projections in profile periodically distributed on the surface and ideally smooth rigid. The whole contact is consisted of cavitated area and hydrodynamic area. The hydrodynamic area consists of many micro Raleigh bearings which are discontinuously and periodically distributed in the contact. Analysis is thus carried out for a micro Raleigh bearing in this contact. The hydrodynamic contact in this micro Raleigh bearing consists of boundary film area and fluid film area which, respectively, occur in the outlet and inlet zones. In boundary film area, the film slips at the upper contact surface due to the limited shear stress capacity of the film–contact interface, while the film does not slip at the lower contact surface due to the shear stress capacity large enough at the film–contact interface. In boundary film area, the viscosity, density and shear elastic modulus of the film are varied across the film thickness due to the film–contact interactions, and their effective values are used in modeling, which depend on the film thickness. The analytical approach proposed by Zhang (J Mol Liq 128:60–64, 2006) and Zhang et al. (Int J Fluid Mech Res 30:542–557, 2003) is used for boundary film area. In fluid film area, the film does not slip at either of the contact surfaces, and the shear elastic modulus of the film is neglected. Conventional hydrodynamic analysis is used for fluid film area. The present paper presents the theoretical analysis and a typical solution. It is found that for the simulated case the boundary film shear elastic modulus effects on the mass flow through the contact, the overall film thickness of the contact and the carried load of the contact are negligible but the boundary film shear elastic modulus effect on the local film thickness of the contact may be significant when the boundary film thickness is on the 1 nm scale and the contact surfaces are elastic. In Part II will be presented detailed results showing boundary film shear elastic modulus effects in different operating conditions.
  相似文献   

10.
A third-order ordinary differential equation (ODE) for thin film flow with both Neumann and Dirichlet boundary conditions is transformed into a second-order nonlinear ODE with Dirichlet boundary conditions.Numerical solutions of the nonlinear second-order ODE are investigated using finite difference schemes.A finite difference formulation to an Emden-Fowler representation of the second-order nonlinear ODE is shown to converge faster than a finite difference formulation of the standard form of the second-order nonlinear ODE.Both finite difference schemes satisfy the von Neumann stability criteria.When mapping the numerical solution of the second-order ODE back to the variables of the original third-order ODE we recover the position of the contact line.A nonlinear relationship between the position of the contact line and physical parameters is obtained.  相似文献   

11.
The influences of elastic substrate on the indentation force, contact radius, electric potential and electric charge responses of piezoelectric film/substrate systems are investigated by the integral transform method. The film is assumed to be ideally bonded to the substrate and the contact interaction between the indenter and the film is assumed to be frictionless, with three kinds of axisymmetric insulating and conducting indenters (i.e., punch, cone and sphere) considered. Obtained results show that when the ratio of the contact radius to the film thickness is close to zero, the influences of the elastic substrate disappear and the indentation behaviors converge to the piezoelectric half space solutions while the indentation responses approach the corresponding ones of elastic half space as the ratio gets to infinity. The transition between the piezoelectric and the elastic half space indentation solutions for the film/substrate system is quantified in terms of the film thickness and the elasticity of the substrate. Finite element analysis on an insulating sphere indentation is conducted to verify the numerical calculations and good agreement is observed. The obtained results are believed to be useful for developing experimental techniques to extract the material properties of piezoelectric film/substrate systems.  相似文献   

12.
Numerical and analytical solutions of the 3D contact problem of elasticity on the penetration of a rigid punch into an orthotropic half-space are obtained disregarding the friction forces.A numericalmethod ofHammerstein-type nonlinear boundary integral equations was used in the case of unknown contact region, which permits determining the contact region and the pressure in this region. The exact solution of the contact problem for a punch shaped as an elliptic paraboloid was used to debug the program of the numerical method. The structure of the exact solution of the problem of indentation of an elliptic punch with polynomial base was determined. The computations were performed for various materials in the case of the penetration of an elliptic or conical punch.  相似文献   

13.
The 3D contact problem on the action of a punch elliptic in horizontal projection on a transversally isotropic elastic half-space is considered for the case in which the isotropy planes are perpendicular to the boundary of the half-space. The elliptic contact region is assumed to be given (the punch has sharp edges). The integral equation of the contact problem is obtained. The elastic rigidity of the half-space boundary characterized by the normal displacement under the action of a given lumped force significantly depends on the chosen direction on this boundary. In this connection, the following two cases of location of the ellipse of contact are considered: it can be elongated along the first or the second axis of Cartesian coordinate system on the body boundary. Exact solutions are obtained for a punch with base shaped as an elliptic paraboloid, and these solutions are used to carry out the computations for various versions of the five elastic constants. The structure of the exact solution is found for a punch with polynomial base, and a method for determining the solution is proposed.  相似文献   

14.
The spread of a thin oil film by surface tension gradients from an oil source of unlimited mass on deep water is considered. A similarity solution for the velocity fields of the oil and water, the oil thickness and the rate at which each grow is obtained both for axisymmetric and the previously explored planar spreading. The dimensionless size of the spread, which is oil type independent, is shown to be 1.0754 and 1.4150 for axisymmetric and planar spreading respectively. It is further shown that the oil film equation of state, which relates surface tension to oil thickness, is unique to each oil or oil-surfactant mixture.  相似文献   

15.
为了研究硅电极在充放电过程中的应力演化,在忽略弹性变形的情况下提出了一个考虑粘塑性的简化力学模型,分别导出了出现相分离和不出现相分离时薄膜电极内应力场的解析解,该模型的计算结果与现有的实验结果相吻合.计算结果表明,当存在相分离时,电极中的应力取决于薄膜电极的厚度和充电速率的乘积;在未出现相分离现象时,应力仅取决于充电速率.这个解析形式的力学模型对于锂离子电池电极材料的设计有着重要的指导意义.  相似文献   

16.
使用离子液体[EMIm]BF4分散多壁碳纳米管(MWCNTs),再以[EMIm]BF4-阿拉伯树胶(GA)为添加剂分散二硫化钼(MoS2),二者的水溶液复配得到复合纳米流体. 采用拉曼光谱分析了MWCNTs的改性度,通过吸光度和粒度对复合纳米流体的分散与悬浮稳定性进行了表征. 对不同纳米颗粒配比的复合纳米流体润湿性能和摩擦学性能进行测试,结果表明:MWCNTs和MoS2质量分数为0.6%、1.2%时复合纳米流体的铺展成膜能力最好,其接触角约为63.04°,相比于去离子水降低了23.55%. 摩擦磨损测试结果也表明此配比下的减摩抗磨性能最佳,平均摩擦系数为0.073,比去离子水降低了61.98%,同时体积磨损率降低了67.87%. 磨痕形貌观测表明,最优配比下磨痕浅,且表面光滑、无犁沟. X射线光电子能谱(XPS)表明MWCNTs和MoS2共同参与摩擦并在基底成膜,由此协同实现了高效润滑.   相似文献   

17.
The current paper is devoted to the study of traveling wave solutions of spatially homogeneous monostable reaction diffusion equations with ergodic or recurrent time dependence, which includes periodic and almost periodic time dependence as special cases. Such an equation has two spatially homogeneous and time recurrent solutions with one of them being stable and the other being unstable. Traveling wave solutions are a type of entire solutions connecting the two spatially homogeneous and time recurrent solutions. Recently, the author of the current paper proved that a spatially homogeneous time almost periodic monostable equation has a spreading speed in any given direction. This result can be easily extended to monostable equations with recurrent time dependence. In this paper, we introduce generalized traveling wave solutions for time recurrent monostable equations and show the existence of such solutions in any given direction with average propagating speed greater than or equal to the spreading speed in that direction and non-existence of such solutions of slower average propagating speed. We also show the uniqueness and stability of generalized traveling wave solutions in any given direction with average propagating speed greater than the spreading speed in that direction. Moreover, we show that a generalized traveling wave solution in a given direction with average propagating speed greater than the spreading speed in that direction is unique ergodic in the sense that its wave profile and wave speed are unique ergodic, and if the time dependence of the monostable equation is almost periodic, it is almost periodic in the sense that its wave profile and wave speed are almost periodic.  相似文献   

18.
Planar JKR adhesive solutions use the half-plane assumption and do not permit calculation of indenter approach or visualization of adhesive force–displacement curves unless the contact is periodic. By considering a conforming cylindrical contact and using an arc crack analogy, we obtain closed-form indenter approach and load–contact size relations for a planar adhesive problem. The contact pressure distribution is also obtained in closed-form. The solutions reduce to known cases in both the adhesion-free and small-contact solution (Barquins, 1988) limits. The cylindrical system shows two distinct regimes of adhesive behavior; in particular, contact sizes exceeding the critical (maximum) size seen in adhesionless contacts are possible. The effects of contact confinement on adhesive behavior are investigated. Some special cases are considered, including contact with an initial neat-fit and the detachment of a rubbery cylinder from a rigid cradle. A comparison of the cylindrical solution with the half-plane adhesive solution is carried out, and it indicates that the latter typically underestimates the adherence force. The cylindrical adhesive system is novel in that it possesses stable contact states that may not be attained even on applying an infinite load in the absence of adhesion.  相似文献   

19.
A direct approach is used to solve the Riemann problem for a quasilinear hyperbolic system of equations governing the one dimensional unsteady planar flow of an isentropic, inviscid compressible fluid in the presence of dust particles. The elementary wave solutions of the Riemann problem, that is, shock waves, rarefaction waves and contact discontinuities are derived and their properties are discussed for a dusty gas. The generalised Riemann invariants are used to find the solution between rarefaction wave and the contact discontinuity and also inside rarefaction fan. Unlike the ordinary gasdynamic case, the solution inside the rarefaction waves in dusty gas cannot be obtained directly and explicitly; indeed, it requires an extra iteration procedure. Although the case of dusty gas is more complex than the ordinary gas dynamics case, all the parallel results for compressive waves remain identical. We also compare/contrast the nature of the solution in an ordinary gasdynamics and the dusty gas flow case.  相似文献   

20.
利用光干涉技术研究了微油滴通过弹流润滑接触区的润滑行为,考察了油滴大小、卷吸速度和载荷等因素的影响.结果表明微油滴在入口区域因挤压或毛细力效应发生表面积扩展,从而影响润滑膜的形成.油滴越大,挤压扩展直径越大,形成的膜厚越大.卷吸速度越高,入口处微油滴表面积扩展越不充分,仅接触区局部形成油膜,微油滴在接触表面挤压出凹坑穿过接触区.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号