首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Vehicle routing problems with general time windows are extremely difficult to solve. However, the time windows in a particular problem may have a special structure which can be exploited. We consider a single-vehicle arc-routing problem in which the arcs are partitioned into deadline classes. It is shown that a cutting-plane approach works well for this problem.  相似文献   

2.
This paper introduces a new integrated model for the combined days-off and shift scheduling problem (the tour scheduling problem). This model generalizes the forward and backward constraints, previously introduced by Bechtold and Jacobs for the shift scheduling problem, to the tour scheduling problem. This results in a general and compact formulation that can handle several types of scheduling flexibility. We also provide a new proof of the correctness of forward and backward constraints based on Benders decomposition. The latter approach is interesting in itself because it can be used to solve the problem when extraordinary overlap of break windows or start-time bands is present. A discussion of model size for a set of hypothetical test problems is presented to show the merits of the new formulation.  相似文献   

3.
Given the sets of flights and aircraft of an airline carrier, the fleet assignment problem consists of assigning the most profitable aircraft type to each flight. In this paper we propose a model for the periodic fleet assignment problem with time windows in which departure times are also determined. Anticipated profits depend on the schedule and the selection of aircraft types. In addition, short spacings between consecutive flights which serve the same origin–destination pair of airports are penalized. We propose a non-linear integer multi-commodity network flow formulation. We develop new branch-and-bound strategies which are embedded in our branch-and-price solution strategy. Finally, we present computational results for periodic daily schedules on three real-world data sets.  相似文献   

4.
The problem of deciding how to land aircraft approaching an airport involves assigning each aircraft to an appropriate runway, computing a landing sequence for each runway and scheduling the landing time for each aircraft. Runway allocation, sequencing and scheduling for each aircraft must ensure the scheduled landing time lies within a predefined time window and meet separation time requirements with other aircraft. The objective is to achieve effective runway use.In this paper, the multiple runway case of the static Aircraft Landing Problem is considered. Two heuristic techniques are presented: Scatter Search and the Bionomic Algorithm, population heuristic approaches that have not been applied to this problem before.Computational results are presented for publicly available test problems involving up to 500 aircraft and five runways showing that feasible solutions of good quality can be produced relatively quickly.  相似文献   

5.
研究了带有时间窗、飞机着陆的总提前/拖期惩罚最小为目标函数的飞机着陆问题。针对此问题设计了一种遗传算法进行求解。染色体表示为飞机着陆次序和着陆跑道两个向量,一个新的解码算法来计算飞机的着陆时间。采用数据库OR-Library中的实例进行数值实验,实验结果表明:设计的算法是有效的, 主要原因是解码算法能大大提高解的质量。该算法对于求解带有时间窗、目标函数为提前/拖期惩罚最小的调度问题具有借鉴意义。  相似文献   

6.
For a host aircraft in the abort landing mode under emergency conditions, the best strategy for collision avoidance is to maximize wrt to the controls the timewise minimum distance between the host aircraft and an intruder aircraft. This leads to a maximin problem or Chebyshev problem of optimal control. At the maximin point of the encounter, the distance between the two aircraft has a minimum wrt the time; its time derivative vanishes and this occurs when the relative position vector is orthogonal to the relative velocity vector. By using the zero derivative condition as an inner boundary condition, the one-subarc Chebyshev problem can be converted into a two-subarc Bolza-Pontryagin problem, which in turn can be solved via the multiple-subarc sequential gradient-restoration algorithm.  相似文献   

7.
In this paper we define a generic decision problem — the displacement problem. The displacement problem arises when we have to make a sequence of decisions and each new decision that must be made has an explicit link back to the previous decision that was made. This link is quantified by means of the displacement function. One situation where the displacement problem arises is that of dynamically scheduling aircraft landings at an airport. Here decisions about the landing times for aircraft (and the runways they land on) must be taken in a dynamic fashion as time passes and the operational environment changes. We illustrate the application of the displacement problem to the dynamic aircraft landing problem. Computational results are presented for a number of publicly available test problems involving up to 500 aircraft and five runways.  相似文献   

8.
Recently, crossdocking techniques have been successfully applied in responsive supply chain management. However, most researches focused on physical layout of a crossdock, or scheduling operations within a crossdock. In this paper, we study a multi-crossdock transshipment service problem with both soft and hard time windows. The flows from suppliers to customers via the crossdocks are constrained by fixed transportation schedules. Cargos can be delayed and consolidated in crossdocks, and both suppliers and customers have specific hard time windows. In addition to hard time windows, customers also have less-restrictive time windows, called soft time windows. The problem to minimize the total cost of the multi-crossdock distribution network, including transportation cost, inventory handling cost and penalty cost, can be proved to be NP-hard in the strong sense and hence efficient heuristics are desired. We propose two types of meta-heuristic algorithms, called Adaptive Tabu Search and Adaptive Genetic Algorithm, respectively, to solve the problem efficiently. We conduct extensive experiments and the results show that both of them outperform CPLEX solver and provide fairly good solutions within realistic timescales. We also perform sensitivity analysis and obtain a number of managerial insights.  相似文献   

9.
We study a manpower scheduling problem with job time windows and job-skills compatibility constraints. This problem is motivated by airline catering operations, whereby airline meals and other supplies are delivered to aircrafts on the tarmac just before the flights take-off. Jobs (flights) must be serviced within a given time-window by a team consisting of a driver and loader. Each driver/loader has the skills to service some, but not all, of the airline/aircraft/configuration of the jobs. Given the jobs to be serviced and the roster of workers for each shift, the problem is to form teams and assign teams and start-times for the jobs, so as to service as many flights as possible. Only teams with the appropriate skills can be assigned to a flight. Workload balance among the teams is also a consideration. We present model formulations and investigate a tabu search heuristic and a simulated annealing heuristic approach to solve the problem. Computational experiments show that the tabu search approach outperforms the simulated annealing approach, and is capable of finding good solutions.  相似文献   

10.
This paper presents an exact solution framework for solving some variants of the vehicle routing problem (VRP) that can be modeled as set partitioning (SP) problems with additional constraints. The method consists in combining different dual ascent procedures to find a near optimal dual solution of the SP model. Then, a column-and-cut generation algorithm attempts to close the integrality gap left by the dual ascent procedures by adding valid inequalities to the SP formulation. The final dual solution is used to generate a reduced problem containing all optimal integer solutions that is solved by an integer programming solver. In this paper, we describe how this solution framework can be extended to solve different variants of the VRP by tailoring the different bounding procedures to deal with the constraints of the specific variant. We describe how this solution framework has been recently used to derive exact algorithms for a broad class of VRPs such as the capacitated VRP, the VRP with time windows, the pickup and delivery problem with time windows, all types of heterogeneous VRP including the multi depot VRP, and the period VRP. The computational results show that the exact algorithm derived for each of these VRP variants outperforms all other exact methods published so far and can solve several test instances that were previously unsolved.  相似文献   

11.
We study a vehicle routing problem with soft time windows and stochastic travel times. In this problem, we consider stochastic travel times to obtain routes which are both efficient and reliable. In our problem setting, soft time windows allow early and late servicing at customers by incurring some penalty costs. The objective is to minimize the sum of transportation costs and service costs. Transportation costs result from three elements which are the total distance traveled, the number of vehicles used and the total expected overtime of the drivers. Service costs are incurred for early and late arrivals; these correspond to time-window violations at the customers. We apply a column generation procedure to solve this problem. The master problem can be modeled as a classical set partitioning problem. The pricing subproblem, for each vehicle, corresponds to an elementary shortest path problem with resource constraints. To generate an integer solution, we embed our column generation procedure within a branch-and-price method. Computational results obtained by experimenting with well-known problem instances are reported.  相似文献   

12.
We consider the problem of dispatching technicians to service/repair geographically distributed equipment. This problem can be cast as a vehicle routing problem with time windows, where customers expect fast response and small delays. Estimates of the service time, however, can be subject to a significant amount of uncertainty due to misdiagnosis of the reason for failure or surprises during repair. It is therefore crucial to develop routes for the technicians that would be less sensitive to substantial deviations from estimated service times. In this paper we propose a robust optimization model for the vehicle routing problem with soft time windows and service time uncertainty and solve real-world instances with a branch and price method. We evaluate the efficiency of the approach through computational experiments on real industry routing data.  相似文献   

13.
Disruptions in airline operations can result in infeasibilities in aircraft and passenger schedules. Airlines typically recover aircraft schedules and disruptions in passenger itineraries sequentially. However, passengers are severely affected by disruptions and recovery decisions. In this paper, we present a mathematical formulation for the integrated aircraft and passenger recovery problem that considers aircraft and passenger related costs simultaneously. Using the superimposition of aircraft and passenger itinerary networks, passengers are explicitly modeled in order to use realistic passenger related costs. In addition to the common routing recovery actions, we integrate several passenger recovery actions and cruise speed control in our solution approach. Cruise speed control is a very beneficial action for mitigating delays. On the other hand, it adds complexity to the problem due to the nonlinearity in fuel cost function. The problem is formulated as a mixed integer nonlinear programming (MINLP) model. We show that the problem can be reformulated as conic quadratic mixed integer programming (CQMIP) problem which can be solved with commercial optimization software such as IBM ILOG CPLEX. Our computational experiments have shown that we could handle several simultaneous disruptions optimally on a four-hub network of a major U.S. airline within less than a minute on the average. We conclude that proposed approach is able to find optimal tradeoff between operating and passenger-related costs in real time.  相似文献   

14.
We consider the bandwidth scheduling problem that consists of selecting and scheduling calls from a list of available calls to be routed on a bandwidth-capacitated telecommunication network in order to maximize profit. Each accepted call should be routed within a permissible scheduling time window for a required duration. To author's knowledge, this study represents the first work on bandwidth scheduling with time windows. We present an integer programming formulation of the problem. We also propose a solution procedure based on the well-established Lagrangean relaxation technique. The results of extensive computational experiments over a wide range of problem structures indicate that the procedure is both efficient and effective.  相似文献   

15.
Lot-sizing with production and delivery time windows   总被引:3,自引:0,他引:3  
We study two different lot-sizing problems with time windows that have been proposed recently. For the case of production time windows, in which each client specific order must be produced within a given time interval, we derive tight extended formulations for both the constant capacity and uncapacitated problems with Wagner-Whitin (non-speculative) costs. For the variant with nonspecific orders, known to be equivalent to the problem in which the time windows can be ordered by time, we also show equivalence to the basic lot-sizing problem with upper bounds on the stocks. Here we derive polynomial time dynamic programming algorithms and tight extended formulations for the uncapacitated and constant capacity problems with general costs. For the problem with delivery time windows, we use a similar approach to derive tight extended formulations for both the constant capacity and uncapacitated problems with Wagner-Whitin (non-speculative) costs. We are most grateful for the hospitality of IASI, Rome, where part of this work was carried out. The collaboration with IASI takes place in the framework of ADONET, a European network in Algorithmic Discrete Optimization, contract n MRTN-CT-2003-504438. This text presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister's Office, Science Policy Programming. The scientific responsibility is assumed by the authors.  相似文献   

16.
Logic-based Benders decomposition can combine mixed integer programming and constraint programming to solve planning and scheduling problems much faster than either method alone. We find that a similar technique can be beneficial for solving pure scheduling problems as the problem size scales up. We solve single-facility non-preemptive scheduling problems with time windows and long time horizons. The Benders master problem assigns jobs to predefined segments of the time horizon, where the subproblem schedules them. In one version of the problem, jobs may not overlap the segment boundaries (which represent shutdown times, such as weekends), and in another version, there is no such restriction. The objective is to find feasible solutions, minimize makespan, or minimize total tardiness.  相似文献   

17.
The underlying time framework used is one of the major differences in the basic structure of mathematical programming formulations used for production scheduling problems. The models are either based on continuous or discrete time representations. In the literature there is no general agreement on which is better or more suitable for different types of production or business environments. In this paper we study a large real-world scheduling problem from a pharmaceutical company. The problem is at least NP-hard and cannot be solved with standard solution methods. We therefore decompose the problem into two parts and compare discrete and continuous time representations for solving the individual parts. Our results show pros and cons of each model. The continuous formulation can be used to solve larger test cases and it is also more accurate for the problem under consideration.  相似文献   

18.
Optimal abort landing trajectories of an aircraft under different windshear-downburst situations are computed and discussed. In order to avoid an airplane crash due to severe winds encountered by the aircraft during the landing approach, the minimum altitude obtained during the abort landing maneuver is to be maximized. This maneuver is mathematically described by a Chebyshev optimal control problem. By a transformation to an optimal control problem of Mayer type, an additional state variable inequality constraint for the altitude has to be taken into account; here, its order is three. Due to this altitude constraint, the optimal trajectories exhibit, depending on the windshear parameters, up to four touch points and also up to one boundary arc at the minimum altitude level. The control variable is the angle of attack time rate which enters the equations of motion linearly; therefore, the Hamiltonian of the problem is nonregular. The switching structures also includes up to three singular subarcs and up to two boundary subarcs of an angle of attack constraint of first order. This structure can be obtained by applying some advanced necessary conditions of optimal control theory in combination with the multiple-shooting method. The optimal solutions exhibit an oscillatory behavior, reaching the minimum altitude level several times. By the optimization, the maximum survival capability can also be determined; this is the maximum wind velocity difference for which recovery from windshear is just possible. The computed optimal trajectories may serve as benchmark trajectories, both for guidance laws that are desirable to approach in actual flight and for optimal trajectories may then serve as benchmark trajectories both for guidance schemes and also for numerical methods for problems of optimal control.This paper is dedicated to Professor George Leitmann on the occasion of his seventieth birthday.  相似文献   

19.
In this paper a mixed method, which combines the finite element method and the differential quadrature element method (DQEM), is presented for solving the time dependent problems. In this study, the finite element method is first used to discretize the spatial domain. The DQEM is then employed as a step-by-step DQM in time domain to solve the resulting initial value problem. The resulting algebraic equations can be solved by either direct or iterative methods. Two general formulations using the DQM are also presented for solving a system of linear second-order ordinary differential equations in time. The application of the formulation is then shown by solving a sample moving load problem. Numerical results show that the present mixed method is very efficient and reliable.  相似文献   

20.
In this paper, we describe the implementation aspects of an optimization algorithm for optimal control problems with control, state, and terminal constraints presented in our earlier paper. The important aspect of the implementation is that, in the direction-finding subproblems, it is necessary only to impose the state constraint at relatively few points in the time involved. This contributes significantly to the algorithmic efficiency. The algorithm is applied to solve several optimal control problems, including the problem of the abort landing of an aircraft in the presence of windshear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号