首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Wang YQ  Zou WS 《Talanta》2011,85(1):469-475
New strategies for silica coating of inorganic nanoparticles became a research hotspot for enhancing the mechanical stability of colloidal particles and protecting colloidal particles against oxidation and agglomeration, and so on. In this paper, 3-aminopropyltriethoxysilane (APTES)-functionalized Mn doped (AF MnD) ZnS QDs was prepared to be firsyly through the use of silane coupling agents to form an active layer of silica, then sol-gel reaction of TEOS co-deposited with APTES on the surface of resultant active layer of silica. The emitted long lifetime room-temperature phosphorescence (RTP) of the resultant nanomaterials allows an appropriate delay time so that any fluorescent emission and scattering light can be easily avoided. The APTES anchored on the layer of silica can bind 2,4,6-trinitrotoluene (TNT) species to form TNT anion through acid-base pairing interaction, the TNT anion species may increase the charge-transfer pathways from the nanocrystals to nitroaromatic analytes, therefore further enhance the quenching efficiency of RTP. Moreover, APTES as capped reagents can enlarge the spectral sensitivity and enhance RTP response of nanocrystals to the electron-deficient nitroaromatic and nitrophenol species. Meanwhile, AF MnD ZnS QDs also exhibited a highly selective response toward TNT analyte through significant color change and quenching of 4T1 to 6A1 transition emission. This AF MnD ZnS QDs based sensor showed a very good linearity in the range of 0.05-1.8 μM with detection limit down to 50 nM (quenching percentage of phosphorescence intensity of 8%) and RSD of 3.5% (n = 5). The reported QDs-based chemosensors here open up a promising prospect for the sensitive and convenient sensing of TNT explosive.  相似文献   

2.
New strategies for onsite determination of trace 2,4,6-trinitrotoluene (TNT) explosives have become a research hotspot for homeland security needs against terrorism and environmental concerns. Herein, we designed a ratiometric fluorescence nanohybrid comprising 3-mercaptopropionic acid-capped green-emitting CdTe quantum dots (gQDs) encapsulated into SiO2 sphere and l-cysteine (Lcys)-capped red-emitting CdTe QDs (rQDs) conjugated onto SiO2 surface. The surface Lcys can be used as not only the stabilizer of the rQDs but also the primary amine provider which can react with TNT to form Meisenheimer complexes. Without any additional surface modification procedure, the fluorescence of rQDs equipped with Lcys was selectively quenched by TNT because electrons of the rQDs transferred to TNT molecules due to the formation of Meisenheimer complexes. Meanwhile, the embedded gQDs always remained constant. Upon exposure to increasing amounts of TNT, the fluorescence of rQDs could be gradually quenched and consequently the logarithm of the dual emission intensity ratios exhibited a good linear negative correlation with TNT concentration over a range of 10 nM–8 μM with a low detection limit of 3.3 nM. One can perform onsite visual determination of TNT with high resolution because the ratiometric fluorescence nanosensing system exhibited obvious fluorescence color changes. This sensing strategy has been successfully applied in real samples and already integrated in a filter paper-based assay, which enables potential fields use application featuring easy handling and cost-effectiveness.  相似文献   

3.
The authors describe an aptasensor for visual and fluorescent detection of lysozyme via an inner filter effect (IFE). The assay is based on the fact that red gold nanoparticles (AuNPs) act as powerful absorbers of the green fluorescence of CdTe because of spectral overlap. If the lysozyme-binding aptamer is adsorbed onto the surface of the AuNPs, the salt-induced aggregation of AuNPs (that leads to a color change from red to blue) does not occur and the IFE remains efficient. If lysozyme is present, it will bind the aptamer and thereby prevent its adsorption on the AuNPs. As a result, the salt-triggered aggregation of the AuNPs will occur. Consequently, color will change from red to blue, and green fluorescence will pop up because the IFE is suppressed. Under optimum conditions, fluorescence is linearly related to lysozyme concentration in the 1.0 nM to 20 nM concentration range, with a 0.55 nM limit of detection. The method is perceived to be of wider applicability in that it may be used to design other visual and fluorescent assays if appropriate aptamers are available.
Graphical abstract The fluorescence intensity of QDs is quenched by gold nanoparticles (AuNPs) due to an inner filter effect. Aptamers can adsorb on AuNPs to prevent the salt-induced aggregation. AuNPs serve a dual function as fluorescence quencher and colorimetric reporter.
  相似文献   

4.
This paper reports a reversible dual fluorescence switch for the detection of a proton target and 2,4,6‐trinitrotoluene (TNT) with opposite‐response results, based on fluorophore derivatization of silica nanoparticles. Fluorescent silica nanoparticles were synthesized through modification of the surface with a nitrobenzoxadiazole (NBD) fluorophore and an organic amine to form a hybrid monolayer of fluorophores and amino ligands; the resultant nanoparticles showed different fluorescence responses to the proton target and TNT. Protonation of the amino ligands leads to fluorescence enhancement due to inhibition of photoinduced electron transfer (PET) between the amine and fluorophore. By contrast, addition of TNT results in fluorescence quenching because a fluorescence resonance energy transfer (FRET) happens between the NBD fluorophore and the formed TNT–amine complex. The fluorescence signal is reversible through washing with the proper solvents and the nanoparticles can be reused after centrifugal separation. Furthermore, these nanoparticles were assembled into chips on an etched silicon wafer for the detection of TNT and the proton target. The assembled chip can be used as a convenient indicator of herbicide (2,4‐dichlorophenoxyacetic acid) and TNT residues with the use of only 10 μL of sample. The simple NBD‐grafted silica nanoparticles reported here show a reversible signal and good assembly flexibility; thus, they can be applied in multianalyte detection.  相似文献   

5.
Chao Wang 《Talanta》2009,77(4):1358-249
This paper presents the synthesis of aqueous CdTe QDs embedded silica nanoparticles by reverse microemulsion method and their applications as fluorescence probes in bioassay and cell imaging. With the aim of embedding more CdTe QDs in silica spheres, we use poly(dimethyldiallyl ammonium chloride) to balance the electrostatic repulsion between CdTe QDs and silica intermediates. By modifying the surface of CdTe/SiO2 composite nanoparticles with amino and methylphosphonate groups, biologically functionalized and monodisperse CdTe/SiO2 composite nanoparticles can be obtained. In this work, CdTe/SiO2 composite nanoparticles are conjugated with biotin-labeled mouse IgG via covalent binding. The biotin-labeled mouse IgG on the CdTe/SiO2 composite nanoparticles surface can recognize FITC-labeled avidin and avidin on the surface of polystyrene microspheres by protein-protein binding. Finally, the CdTe/SiO2 composite nanoparticles with secondary antibody are used to label the MG63 osteosarcoma cell with primary antibody successfully, which demonstrates that the application of CdTe/SiO2 composite nanoparticles as fluorescent probes in bioassay and fluorescence imaging is feasible.  相似文献   

6.
Sui B  Shen L  Jin W 《Talanta》2011,85(3):1609-1613
An ultrasensitive solid-phase fluorescence resonance energy quenching (FREQ) method for determination of 1,4-dihydroxybenzene (DHB) using mercaptosuccinic acid (MSA)-capped CdTe quantum dots (QDs) immobilized on silica nanoparticles (NPs) as donors was developed. In the method, silica NPs were first modified with 3-aminopropyltriethoxysilane (APTS). Then, MSA-capped CdTe QDs were immobilized on the surface of the APTS-modified silica NPs. Finally, DHB in the solution was attached to the empty sites on the surface of silica NPs with QDs through electrostatic interaction. The fluorescence emission of the QDs was quenched by the proximal DHB molecules on the silica NPs. The quenching efficiency of the solid-phase FREQ method was 200-times higher than that of the solution-phase FREQ method. Using the ultrasensitive solid-phase FREQ method, DHB as low as 2.4 × 10−12 mol/L could be detected. The method was applied to quantify trace DHB in water samples.  相似文献   

7.
Bifunctional nanoparticles with highly fluorescence and decent magnetic properties have been widely used in biomedical application. In this study, highly fluorescent magnetic nanoparticles (FMNPs) with uniform size of ca. 40 nm are prepared by encapsulation of both magnetic nanoparticles (MNPs) and shell/core quantum dots (QDs) with well-designed shell structure/compositions into silica matrix via a one-pot reverse microemulsion approach. The spectral analysis shows that the FMNPs hold high fluorescent quantum yield (QY). The QYs and saturation magnetization of the FMNPs can be regulated by varying the ratio of the encapsulated QDs to MNPs. Moreover, the surface of the FMNPs can be modified to offer chemical groups for antibody conjugation for following use in target-enrichment and subsequent fluorescent detection. The in vitro immunofluorescence assay and flow cytometric analysis indicate that the bifunctional FMNPs-antibody bioconjugates are capable of target-enrichment, magnetic separation and can also be used as alternative fluorescent probes on flow cytometry for biodetection.  相似文献   

8.
In this work, we develop a simple and rapid sensing method for the visual and fluorescent detection of acetamiprid (AC) based on the inner-filter effect (IFE) of gold nanoparticles (AuNPs) on ratiometric fluorescent quantum dots (RF-QDs). The RF-QDs based dual-emission nanosensor was fabricated by assembling green emissive QDs (QDs539 nm, λem = 539 nm) on the surface of red emissive QDs (QDs661 nm, λem = 661 nm)-doped silica microspheres. The photoluminescence (PL) intensity of RF-QDs could be quenched by AuNPs based on IFE. Acetamiprid can adsorb on the surface of AuNPs due to its cyano group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the IFE of AuNPs on RF-QDs was weakened and the PL intensity of RF-QDs was recovered accordingly. Under the optimized conditions, the PL intensity of the RF-QDs/AuNPs system was proportional to the concentration of AC in the range of 0.025–5.0 μg mL−1, with a detection limit of 16.8 μg L−1. The established method had been used for AC detection in environmental and agricultural samples with satisfactory results.  相似文献   

9.
Liu B  Zeng F  Wu G  Wu S 《The Analyst》2012,137(16):3717-3724
The quenching of quantum dots' emission by some analytes (Hg(2+), Pb(2+), etc.) has long been hindering the fabrication of QD-based 'turn-on' or ratiometric fluorescent sensors for these analytes. In this study, we demonstrate a facile solution for constructing a robust FRET-based ratiometric sensor for Hg(2+) detection in water with CdTe QDs as the donor. By using the reverse microemulsion approach, CdTe QDs were first embedded into nanosized silica particles, forming the QDs/silica cores, a positively charged ultrathin spacer layer was then deposited on each QDs/silica core, followed by the coating of a mercury ion probe on the particle surfaces. The resultant multilayered QDs/silica composite nanoparticles are dispersible in HEPES buffered water; and in the presence of mercury ions, the QDs inside the nanoparticles will not be quenched by mercury ions due to the existence of the positively charged spacer layer, but can transfer their excited energy to the acceptors (probe/Hg(2+) complex), thus achieving the FRET-based ratiometric sensing for mercury ions in totally aqueous media. With its detection limit of 260 nM, this QD-based sensor exhibits high selectivity toward mercury ion and can be used in a wide pH range. This strategy may be used to construct QDs-based ratiometric assays for other ions which quench the emission of QDs.  相似文献   

10.
Herein, highly luminescent CdSe quantum dots (QDs) with emissions from the blue to the red region of visible light were synthesized by using a simple method. The emission range of the CdSe QDs could be tuned from λ=503 to 606 nm by controlling the size of the CdSe QDs. Two amino acids, L ‐tryptophan (L ‐Trp) and L ‐arginine (L ‐Arg), were used as coating agents. The quantum yield (QY) of CdSe QDs (green color) with an optimized thickness could reach up to 52 %. The structures and compositions of QDs were examined by using X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Optical properties were studied by using UV/Vis and photoluminescence (PL) spectroscopy and a comparison was made between uncoated and coated CdSe QDs. The amino acid‐modified β‐cyclodextrin (CD)‐coated CdSe QDs presented lower cytotoxicity to cells for 48 h. Furthermore, amino acid‐modified β‐CD‐coated green CdSe QDs in HepG2 cells were assessed by using confocal laser scanning fluorescence microscopy. The results showed that amino acid‐modified β‐CD‐coated green CdSe QDs could enter tumor cells efficiently and indicated that biomolecule‐coated QDs could be used as a potential fluorescent probe.  相似文献   

11.
The present work is aimed to synthesize CdTe/ZnSe core/shell quantum dots (QDs) in an easy way and to explore the possibilities of its application in in vitro imaging of chicken tissue and embryo. The QDs were prepared using microwave irradiation with different temperatures, which is a very easy and less time‐consuming method. Subsequently, these QDs were characterized by spectrofluorimetry, Transmission Electron Microscopy, X‐ray fluorescence analysis and Dynamic Light Scattering measurement. A blueshifting of the emission was found when ZnSe was deposited on CdTe QDs. The QDs showed its fluorescence emission quantum yields up to 25%. They were applied into chicken embryos and breast muscle tissues to study their efficiency in in vitro imaging. All the QDs of different color were able to visualize in in vitro imaging. The highest fluorescence intensity was detected in the case of red QDs prepared at 100°C. The green and red QDs were possible to detect up to the depth of 3 and 4 mm of the tissue, respectively.  相似文献   

12.
The potential toxicity of nanoparticles to aquatic organisms is of interest given that increased commercialization will inevitably lead to some instances of inadvertent environmental exposures. Cadmium selenide quantum dots (QDs) capped with zinc sulfide are used in the semiconductor industry and in cellular imaging. Their small size (<10 nm) suggests that they may be readily assimilated by exposed organisms. We exposed Daphnia magna to both red and green QDs and used synchrotron X-ray fluorescence to study the distribution of Zn and Se in the organism over a time period of 36 h. The QDs appeared to be confined to the gut, and there was no evidence of further assimilation into the organism. Zinc and Se fluorescence signals were highly correlated, suggesting that the QDs had not dissolved to any extent. There was no apparent difference between red or green QDs, i.e., there was no effect of QD size. 3D tomography confirmed that the QDs were exclusively in the gut area of the organism. It is possible that the QDs aggregated and were therefore too large to cross the gut wall.  相似文献   

13.
A flow cytometric detecting technology based on quantum dots (QDs)-encoded beads has been described. Using this technology, several QDs-encoded beads with different code were identified effectively, and the target molecule (DNA sequence) in solution was also detected accurately by coupling to its complementary sequence probed on QDs-encoded beads through DNA hybridization assay. The resolution of this technology for encoded beads is resulted from two longer wavelength fluorescence identification signals (yellow and red fluorescent signals of QDs), and the third shorter wavelength fluorescence signal (green reporting signal of fluorescein isothiocyanate (FITC)) for the determination of reaction between probe and target. In experiment, because of QDs’ unique optical character, only one excitation light source was needed to excite the QDs and probe dye FITC synchronously comparing with other flow cytometric assay technology. The results show that this technology has present excellent repeatability and good accuracy. It will become a promising multiple assay platform in various application fields after further improvement.  相似文献   

14.
Amine-functionalized mesoporous silica nanoparticles containing poly(p-phenylenevinylene) provide a facile strategy to detect TNT through fluorescence resonance energy transfer (FRET). The observed linear fluorescence intensity change allows the quantitative detection of TNT with the detection limit of 6 × 10(-7) M.  相似文献   

15.
A new strategy is reported for multicolor fluorescence writing on thin solid films with mechanical forces. This concept is illustrated by the use of a green‐fluorescent pentiptycene derivative 1 , which forms variably colored fluorescent exciplexes: a change from yellow to red was observed with anilines, and fluorescence quenching (a change to black) occurred in the presence of benzoquinone. Mechanical forces, such as grinding and shearing, induced a crystalline‐to‐amorphous phase transition in both the pristine and guest‐adsorbed solids that led to a change in the fluorescence color (mechanofluorochromism) and a memory of the resulting color. Fluorescence drawings of five or more colors were created on glass or paper and could be readily erased by exposure to air and dichloromethane fumes. The structural and mechanistic aspects of the observations are also discussed.  相似文献   

16.
水合肼还原二氧化碲水相合成CdTe量子点   总被引:3,自引:0,他引:3  
以巯基乙酸为稳定剂, 氯化镉为镉源, 二氧化碲为碲源, 水合肼为还原剂, 一步合成了CdTe量子点. 研究了反应时间、 碲与镉的摩尔比及巯基乙酸与镉的摩尔比等实验条件对CdTe量子点生长过程的影响. 采用荧光光谱、 X射线粉末衍射和透射电子显微镜等对量子点的性能进行了表征. 结果表明, 反应时间及反应物的相对用量对量子点的生长和荧光光谱有明显影响, 所得CdTe量子点具有立方晶型, 发光颜色从绿色到红色连续可调, 荧光量子产率可达26%.  相似文献   

17.
This paper reports an inverted opal fluorescence chemosensor for the ultrasensitive detection of explosive nitroaromatic vapors through resonance‐energy‐transfer‐amplified fluorescence quenching. The inverted opal silica film with amino ligands was first fabricated by the acid–base interaction between 3‐aminopropyltriethoxysilane and surface sulfonic groups on polystyrene microsphere templates. The fluorescent dye was then chemically anchored onto the interconnected porous surface to form a hybrid monolayer of amino ligands and dye molecules. The amino ligands can efficiently capture vapor molecules of nitroaromatics such as 2,4,6‐trinitrotoluene (TNT) through the charge‐transfer complexing interaction between electron‐rich amino ligands and electron‐deficient aromatic rings. Meanwhile, the resultant TNT–amine complexes can strongly suppress the fluorescence emission of the chosen dye by the fluorescent resonance energy transfer (FRET) from the dye donor to the irradiative TNT–amino acceptor through intermolecular polar–polar resonance at spatial proximity. The quenching response of the highly ordered porous films with TNT is greatly amplified by at least 10‐fold that of the amorphous silica films, due to the interconnected porous structure and large surface‐to‐volume ratio. The inverted opal film with a stable fluorescence brightness and strong analyte affinity has lead to an ultrasensitive detection of several ppb of TNT vapor in air.  相似文献   

18.
The assembly kinetics of colloidal semiconductor quantum dots (QDs) on solid inorganic surfaces is of fundamental importance for implementation of their solid-state devices. Herein an inorganic binding peptide, silica binding QBP1, was utilized for the self-assembly of nanocrystal quantum dots on silica surface as a smart molecular linker. The QD binding kinetics was studied comparatively in three different cases: first, QD adsorption with no functionalization of substrate or QD surface; second, QD adsorption on QBP1-modified surface; and, finally, adsorption of QBP1-functionalized QD on silica surface. The surface modification of QDs with QBP1 enabled 79.3-fold enhancement in QD binding affinity, while modification of a silica surface with QBP1 led to only 3.3-fold enhancement. The fluorescence microscopy images also supported a coherent assembly with correspondingly increased binding affinity. Decoration of QDs with inorganic peptides was shown to increase the amount of surface-bound QDs dramatically compared to the conventional methods. These results offer new opportunities for the assembly of QDs on solid surfaces for future device applications.  相似文献   

19.
以N-(p-Maleimidophenyl)isocyanate(PMPI)为交联剂, 将线粒体信号肽分子共价修饰到二氧化硅荧光纳米颗粒表面, 构建线粒体信号肽功能化二氧化硅荧光纳米颗粒. 采用荧光分光光度计、Zeta电位仪以及透射电子显微镜对修饰前后的二氧化硅纳米颗粒进行了表征. 结果表明, 信号肽可被成功修饰在纳米颗粒表面, 并且纳米颗粒粒径在信号肽分子修饰前后没有发生明显变化. 以分离纯化的细胞核作为对照, 采用流式细胞术考察了信号肽功能化二氧化硅荧光纳米颗粒与分离纯化后的线粒体的相互作用. 结果表明, 线粒体信号肽修饰到二氧化硅纳米颗粒表面后依然保持良好的生物活性, 能够介导二氧化硅纳米颗粒特异性识别及结合分离纯化的线粒体, 从而为线粒体监测及其功能调控研究提供了新的思路.  相似文献   

20.
Collagen, the most abundant protein in human body, has been widely used as an excellent natural material for diverse biomedical applications due to its superior properties such as ample biological interaction sites, minimal immunogenicity and high biocompatibility. Collagens of different lengths are produced by recombinant technology and utilized to functionalize fluorescent silica nanoparticles (FNPs). The collagen‐functionalized FNPs display mono‐disperse distribution, but their sizes are dependent on the length of collagen. These modified FNPs all show nice fluorescence profile as well as low cytotoxicity, suggesting promising applications in bioimaging. We have demonstrated that various types of collagen, conveniently produced by recombinant technology, can be used to modify silica nanoparticles with nice characteristics such as mono‐dispersion, non‐interference in fluorescence and low toxicity. It may endow fluorescent silica nanoparticles with broad biological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号