首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
马永利 《中国物理快报》2004,21(12):2355-2358
In six different regimes for a spatial phase diagram of a trapped interacting Bose-Fermi gas mixture at low temperatures, we present the conditions for the spatial demixing and separation of bosons and fermions. Starting from a semiclassically thermodynamic model for the local density functional of thermal bosons and fermions,the explicit analytical expressions for the fugacities of bosons and fermions are derived in different regimes by means of a first-order perturbation method in a local-density approximation. The critical values of the fermionboson interaction strength as a function of the fractional composition of fermions have a general feature: increase,extreme and decrease with increasing the fermionic composition slightly above Bose-Einstein critical temperature.  相似文献   

2.
We discuss quantum correlations in systems of indistinguishable particles in relation to entanglement in composite quantum systems consisting of well separated subsystems. Our studies are motivated by recent experiments and theoretical investigations on quantum dots and neutral atoms in microtraps as tools for quantum information processing. We present analogies between distinguishable particles, bosons, and fermions in low-dimensional Hilbert spaces. We introduce the notion of Slater rank for pure states of pairs of fermions and bosons in analogy to the Schmidt rank for pairs of distinguishable particles. This concept is generalized to mixed states and provides a correlation measure for indistinguishable particles. Then we generalize these notions to pure fermionic and bosonic states in higher-dimensional Hilbert spaces and also to the multi-particle case. We review the results on quantum correlations in mixed fermionic states and discuss the concept of fermionic Slater witnesses. Then the theory of quantum correlations in mixed bosonic states and of bosonic Slater witnesses is formulated. In both cases we provide methods of constructing optimal Slater witnesses that detect the degree of quantum correlations in mixed fermionic and bosonic states.  相似文献   

3.
Using the dynamical mean-field theory and the Gutzwiller method, we study the Mott transition in Bose–Fermi mixtures confined in a three-dimensional optical lattice and analyze the effect of fermions on the coherence of bosons. We conclude that increasing fermion composition reduces bosonic coherence in the presence of strong Bose–Fermi interactions and under the condition of the integer filling factors for composite fermions, which consist of one fermion and one or more bosonic holes. Various phases of the mixtures have been demonstrated including phase separation of two species, coexisting regions of superfluid bosons and fermionic liquids, and Mott regions in the phase space spanned by the chemical potentials of the bosons and the fermions.  相似文献   

4.
A mixture of ultracold bosons and fermions placed in an optical lattice constitutes a novel kind of quantum gas, and leads to phenomena, which so far has been discussed neither in atomic physics, nor in condensed matter physics. We discuss the phase diagram at low temperatures, and in the limit of strong atom-atom interactions, and predict the existence of quantum phases that involve pairing of fermions with one or more bosons, or, respectively, bosonic holes. The resulting composite fermions may form, depending on the system parameters, a normal Fermi liquid, a density wave, a superfluid liquid, or an insulator with fermionic domains. We discuss the feasibility for observing such phases in current experiments.  相似文献   

5.
We study the transition to fermion pair superfluidity in a mixture of interacting bosonic and fermionic atoms. The fermion interaction induced by the bosons and the dynamical screening of the condensate phonons due to fermions are included using the nonperturbative Hamiltonian flow equations. We determine the bosonic spectrum near the transition towards phase separation and find that the superfluid transition temperature may be increased substantially due to phonon damping.  相似文献   

6.
We derive the time-independent Gross-Pitaevskii equation at zero temperature for condensed bosons, which form as bound-fermion pairs when the mutual fermionic attractive interaction is sufficiently strong, from the strong-coupling limit of the Bogoliubov-de Gennes equations that describe superfluid fermions in the presence of an external potential. Three-body corrections to the Gross-Pitaevskii equation are also obtained by our approach. Our results are relevant to the recent advances with ultracold fermionic atoms in a trap.  相似文献   

7.
We investigate pairing and crystalline instabilities of bosonic and fermionic polar molecules confined to a ladder geometry. Combining analytical and numerical techniques, we show that gases of composite molecular dimers as well as trimers can be stabilized as a function of the density difference between the wires. A shallow optical lattice can pin both liquids, realizing crystals of composite bosons and fermions. We show that these exotic quantum phases are robust against conditions of confinement of the molecular gas to harmonic finite-size potentials.  相似文献   

8.
The aim of this paper is to clarify the conceptual difference which exists between the interactions of composite bosons and the interactions of elementary bosons. A special focus is made on the physical processes which are missed when composite bosons are replaced by elementary bosons. Although what is here said directly applies to excitons, it is also valid for composite bosons in other fields than semiconductor physics. We, in particular, explain how the two elementary scatterings – Coulomb and Pauli – of our many-body theory for composite excitons, can be extended to a pair of fermions which is not an Hamiltonian eigenstate – as for example a pair of trapped electrons, of current interest in quantum information.  相似文献   

9.
We have studied mixtures of fermionic (40)K and bosonic (87)Rb quantum gases in a three-dimensional optical lattice. We observe that an increasing admixture of the fermionic species diminishes the phase coherence of the bosonic atoms as measured by studying both the visibility of the matter wave interference pattern and the coherence length of the bosons. Moreover, we find that the attractive interactions between bosons and fermions lead to an increase of the boson density in the lattice which we measure by studying three-body recombination in the lattice. In our data, we do not observe three-body loss of the fermionic atoms. An analysis of the thermodynamics of a noninteracting Bose-Fermi mixture in the lattice suggests a mechanism for sympathetic cooling of the fermions in the lattice.  相似文献   

10.
Supersymmetry is assumed to be a basic symmetry of the world in many high-energy theories, but none of the superpartners of any known elementary particle have been observed yet. We argue that supersymmetry can also be realized and studied in ultracold atomic systems with a mixture of bosons and fermions, with properly tuned interactions and single particle dispersion. We further show that in such nonrelativistic systems supersymmetry is either spontaneously broken or explicitly broken by a chemical potential difference between the bosons and fermions. In both cases the system supports a sharp fermionic collective mode similar to the Goldstino mode in high-energy physics, due to supersymmetry. We also discuss possible ways to detect this mode experimentally.  相似文献   

11.
We point out that generally the low-energy spectrum in supersymmetric technicolor models contains quasi-Goldstone fermions and quasi-Goldstone bosons in addition to the usual (pseudo)- Goldstone bosons. Using the language of Kähler geometry, we present a step-by-step procedure for constructing gauge-invariant non-linear lagrangians involving the fermionic and bosonic Goldstone particles in situations in which supersymmetry is preserved. Both the cases of fully gauged and partially gauged global symmetries are considered. We discuss the dynamical version of the super-Higgs mechanism, and we illustrate it with the supersymmetric Susskind-Weinberg technicolor model.  相似文献   

12.
We study a many-body mixture of an equal number of bosons and two-component fermions with a strong contact attraction. In this system bosons and fermions can be paired into composite fermions. We construct a large N extension where both bosons and fermions have the extra large N degrees of freedom and the boson–fermion interaction is extended to a four-point contact interaction which is invariant under the O(N) group transformation, so that the composite fermions become singlet in terms of the O(N) group. It is shown that such O(N) singlet fields have controllable quantum fluctuations suppressed by 1/N factors and yield a systematic 1/N-expansion in terms of composite fermions. We derive an effective action described by composite fermions up to the next-to-leading-order terms in the large N expansion, and show that there can be the BCS superfluidity of composite fermions at sufficiently low temperatures.  相似文献   

13.
The transformation of interacting fermions into free bosons known e.g. from the solution of the Luttinger model is reconsidered in a condensed version which combines all fermionic degrees of freedom in a single boson field. This simplifies calculations as compared to the usual separate treatment of the charge degrees of freedom. The representation of the fermions is exact. The Thirring-Schwinger model is described and solved with special emphasis on boundary effects. Implications for massive fermions are briefly mentioned.  相似文献   

14.
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices.  相似文献   

15.
We consider the single-particle correlations and momentum distributions in a gas of strongly interacting, spinless 1D fermions with zero-range interactions. This system represents a fermionic version of the Tonks-Girardeau gas of impenetrable bosons as it can be mapped to a system of noninteracting 1D bosons. We use this duality to show that the T = 0, single-particle correlations exhibit an exponential decay with distance. This strongly interacting system is experimentally accessible using ultracold atoms and has a Lorentzian momentum distribution at large momenta whose width is given by the linear density.  相似文献   

16.
We analyse the coherence properties of two particles trapped in a one-dimensional harmonic potential. This simple model allows us to derive analytic expressions for the first and second order coherence functions. We investigate their properties depending on the particle nature and the temperature of the quantum gas. We find that at zero temperature non-interacting bosons and fermions show very different correlations, while they coincide for higher temperatures. We observe atom bunching for bosons and atom anti-bunching for fermions. When the effect of s-wave scattering between bosons is taken into account, we find that the range of coherence is enhanced or reduced for repulsive or attractive potentials, respectively. Strongly repelling bosons become in some way more “fermion-like" and show anti-bunching. Their first order coherence function, however, differs from that for fermions. Received 19 September 2002 Published online 4 February 2003  相似文献   

17.
We consider the model of a Fermi-Bose mixture with strong hard-core repulsion between particles of the same sort and attraction between particles of different sorts. In this case, in addition to the standard anomalous averages of the type 〈b〉, 〈bb〉, and 〈cc〉, pairing between fermions and bosons of the type 〈bc〉 is possible. This pairing corresponds to creation of composite fermions in the system. At low temperatures and equal densities of fermions and bosons, composite fermions are further paired into quartets. At higher temperatures, trios consisting of composite fermions and elementary bosons are also present in the system. Our investigations are important in connection with the recent observation of weakly bound dimers in magnetic and optical dipole traps at ultralow temperatures and with the observation of collapse of a Fermi gas in an attractive Fermi-Bose mixture of neutral particles.  相似文献   

18.
We provide a derivation for the particle number densities on phase space for scalar and fermionic fields in terms of Wigner functions. Our expressions satisfy the desired properties: for bosons the particle number is positive, for fermions it lies in the interval between zero and one, and both are consistent with thermal field theory. As applications we consider the Bunch-Davies vacuum and fermionic preheating after inflation.Received: 18 May 2004, Revised: 27 August 2004, Published online: 20 October 2004  相似文献   

19.
T. Cheng 《Annals of Physics》2010,325(2):265-286
We study the spectral and dynamical properties of a simplified model system of interacting fermions and bosons. The spatial discretization and an effective truncation of the Hilbert space permit us to compute the distribution of the bare fermions and bosons in the energy eigenstates of the coupled system. These states represent the physical particles and are used to examine the validity of the analytical predictions by perturbation theory and by the Greenberg-Schweber approximation that assumes all fermions are at rest. As an example of our numerical framework, we examine how a bare electron can trigger the creation of a cloud of virtual bosons around. We relate this cloud to the properties of the associated energy eigenstates.  相似文献   

20.
We analyze the phase diagram of uniform superfluidity for two-species fermion mixtures from the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation (BEC) limit as a function of the scattering parameter and population imbalance. We find at zero temperature that the phase diagram of population imbalance versus scattering parameter is asymmetric for unequal masses, having a larger stability region for uniform superfluidity when the lighter fermions are in excess. In addition, we find topological quantum phase transitions associated with the disappearance or appearance of momentum space regions of zero quasiparticle energies. Lastly, near the critical temperature, we derive the Ginzburg-Landau equation and show that it describes a dilute mixture of composite bosons and unpaired fermions in the BEC limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号