首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We compute the zero bias conductance of electrons through a single ballistic channel weakly coupled to a side quantum dot with Coulomb interaction. In contrast to the standard setup which is designed to measure the transport through the dot, the channel conductance reveals Coulomb blockade dips rather then peaks due to the Fano-like backscattering. At zero temperature the Kondo effect leads to the formation of broad valleys of small conductance corresponding to an odd number of electrons on the dot. By applying a magnetic field in the dot region we find two dips corresponding to a total suppression in the conductance of spins up and down separated by an energy of the order of the Coulomb interaction. This provides a possibility of a perfect spin filter.Received: 6 November 2003, Published online: 2 April 2004PACS: 72.15.Qm Scattering mechanisms and Kondo effect - 73.23.Ad Ballistic transport - 72.25.-b Spin polarized transport  相似文献   

2.
We investigate the linear and nonlinear transport through a single level quantum dot connected to two ferromagnetic leads in Kondo regime, using the slave-boson mean-field approach for finite on-site Coulomb repulsion. We find that for antiparallel alignment of the spin orientations in the leads, a single zero-bias Kondo peak always appears in the voltage-dependent differential conductance with peak height going down to zero as the polarization grows to P=1. For parallel configuration, with increasing polarization from zero, the Kondo peak descends and greatly widens with the appearance of shoulders, and finally splits into two peaks on both sides of the bias voltage around P~0.7 until disappearing at even larger polarization strength. At any spin orientation angle θ, the linear conductance generally drops with growing polarization strength. For a given finite polarization, the minimum linear conductance always appears at θ=π.  相似文献   

3.
孙科伟  熊诗杰 《中国物理》2006,15(4):828-832
We have calculated the transport properties of electron through an artificial quantum dot by using the numerical renormalization group technique in this paper. We obtain the conductance for the system of a quantum dot which is embedded in a one-dimensional chain in zero and finite temperature cases. The external magnetic field gives rise to a negative magnetoconductance in the zero temperature case. It increases as the external magnetic field increases. We obtain the relation between the coupling coefficient and conductance. If the interaction is big enough to prevent conduction electrons from tunnelling through the dot, the dispersion effect is dominant in this case. In the Kondo temperature regime, we obtain the conductivity of a quantum dot system with Kondo correlation.  相似文献   

4.
The conductance through a mesoscopic system of interacting electrons coupled to two adjacent leads is conventionally derived via the Keldysh nonequilibrium Green’s function technique, in the limit of noninteracting leads [Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68 (1992) 2512]. We extend the standard formalism to cater for a quantum dot system with Coulombic interactions between the quantum dot and the leads. The general current expression is obtained by considering the equation of motion of the time-ordered Green’s function of the system. The nonequilibrium effects of the interacting leads are then incorporated by determining the contour-ordered Green’s function over the Keldysh loop and applying Langreth’s theorem. The dot–lead interactions significantly increase the height of the Kondo peaks in density of states of the quantum dot. This translates into two Kondo peaks in the spin differential conductance when the magnitude of the spin bias equals that of the Zeeman splitting. There also exists a plateau in the charge differential conductance due to the combined effect of spin bias and the Zeeman splitting. The low-bias conductance plateau with sharp edges is also a characteristic of the Kondo effect. The conductance plateau disappears for the case of asymmetric dot–lead interaction.  相似文献   

5.
We study the nonequilibrium regime of the Kondo effect in a quantum dot laterally coupled to a narrow wire. We observe a split Kondo resonance when a finite bias voltage is imposed across the wire. The splitting is attributed to the creation of a double-step Fermi distribution function in the wire. Kondo correlations are strongly suppressed when the voltage across the wire exceeds the Kondo temperature. A perpendicular magnetic field enables us to selectively control the coupling between the dot and the two Fermi seas in the wire. Already at fields of order 0.1 T only the Kondo resonance associated with the strongly coupled reservoir survives.  相似文献   

6.
A new mechanism of resonance Kondo tunneling via a composite quantum dot (QD) is proposed. It is shown that, owing to the hidden dynamic spin symmetry, the Kondo effect can be induced by a finite voltage eV applied to the contacts at an even number N of electrons in a QD with zero spin in the ground state. As an example, a double QD is considered in a parallel geometry with N=2, which possesses the SO(4) type symmetry characteristic of a singlet-triplet pair. In this system, the Kondo peak of conductance appears at an eV value compensating for the exchange splitting.  相似文献   

7.
We consider electrons confined to a quantum dot interacting antiferromagnetically with a spin-1 / 2 Kondo impurity. The electrons also interact among themselves ferromagnetically with a dimensionless coupling J , where J =1 denotes the bulk Stoner transition. We show that as J approaches 1 there is a regime with enhanced Kondo correlations, followed by one where the Kondo effect is destroyed and impurity is spin polarized opposite to the dot electrons. The most striking signature of the first, Stoner-enhanced Kondo regime is that a Zeeman field increases the Kondo scale, in contrast to the case for noninteracting dot electrons. Implications for experiments are discussed.  相似文献   

8.
颜志猛  王静  郭健宏 《物理学报》2018,67(18):187302-187302
Majorana零能量模式是自身的反粒子,在拓扑量子计算中有重要应用.本文研究量子点与拓扑超导纳米线混合结构,通过量子点的输运电荷检测Majorana零模式.利用量子主方程方法,发现有无Majorana零模式的电流与散粒噪声存在明显差别.零模式导致稳态电流差呈反对称,在零偏压处显示反常电导峰.电流差随零模式分裂能的增大而减小,随量子点与零模式耦合的增强而增大.另一方面,零模式导致低压散粒噪声相干振荡,零频噪声显著增强.分裂能导致相干振荡愈加明显且零频噪声减小,而量子点与零模式的耦合使零频噪声增强.当量子点与电极非对称耦合时,零模式使电子由反聚束到聚束输运,亚泊松噪声增强为超泊松噪声.稳态电流差结合低压振荡的散粒噪声能够揭示Majorana零模式是否存在.  相似文献   

9.
We find that Kondo resonant conductance can occur in a quantum dot in the Coulomb blockade regime with an even number of electrons N. The contacts are attached to the dot in a pillar configuration, and a magnetic field B( perpendicular) along the axis is applied. B( perpendicular) lifts the spin degeneracy of the dot energies. Usually, this prevents the system from developing the Kondo effect. Tuning B( perpendicular) to the value B(*) where levels with different total spin cross restores both the degeneracy and the Kondo effect. We analyze a dot charged with N = 2 electrons. Coupling to the contacts is antiferromagnetic due to a spin selection rule and, in the Kondo state, the charge is unchanged while the total spin on the dot is S = 1/2.  相似文献   

10.
We report a strong Kondo effect (Kondo temperature approximately 4 K) at high magnetic field in a selective area growth semiconductor quantum dot. The Kondo effect is ascribed to a singlet-triplet transition in the ground state of the dot. At the transition, the low-temperature conductance approaches the unitary limit. Away from the transition, for low bias voltages and temperatures, the conductance is sharply reduced. The observed behavior is compared to predictions for a two-stage Kondo effect in quantum dots coupled to single-channel leads.  相似文献   

11.
We show that the Kondo effect can be induced by an external magnetic field in quantum dots with an even number of electrons. If the Zeeman energy B is close to the single-particle level spacing Delta in the dot, the scattering of the conduction electrons from the dot is dominated by an anisotropic exchange interaction. A Kondo resonance then occurs despite the fact that B exceeds by far the Kondo temperature T(K). As a result, at low temperatures T相似文献   

12.
We focus on a metallic quantum dot coupled to a reservoir of electrons through a single-mode point contact and capacitively connected to a back gate, by including that the gate voltage can exhibit noise; this will occur when connecting the gate lead to a transmission line with a finite impedance. The voltage fluctuations at the back gate can be described through a Caldeira-Leggett model of harmonic oscillators. For weak tunneling between the lead and the dot, exploiting the anisotropic Bose-Fermi spin model, we show that zero-point fluctuations of the environment can markedly alter the Matveev Kondo fixed point leading to an amplification of the charge quantization phenomenon.  相似文献   

13.
利用隶玻色子平均场近似理论,并借助于单杂质的Anderson模型的哈密顿量,研究了T型耦合双量子点嵌入正常电极的基态输运性质.结果表明:在体系处于平衡状态时,随着双量子点的耦合强度增加,体系的Kondo 效应被削弱. 当耦合强度足够强时,Kondo量子点态密度的Kondo共振单峰分裂成两个不对等的Kondo共振双峰.在体系处于非平衡状态时,增加两电极的偏压,态密度的Kondo分裂的非对等性明显加强. 关键词: Kondo效应 态密度 格林函数法 耦合双量子点  相似文献   

14.
We have fabricated a vertical quantum dot with lateral coupling, modulated by a split gate voltage, to a two-dimensional electron. We thereby control not only electron configurations but also the strength of coupling between the dot and the lateral lead, by applying gate voltages. We have measured the conductance enhancement when the applied bias exceeds the single-electron excitation energy, in the Coulomb blockade regime. This conductance enhancement disappears as the split gate voltage decreases (reducing the coupling). This indicates that this enhancement is caused by inelastic co-tunneling. Furthermore, we observed a conductance enhancement at zero source–drain bias with stronger coupling. An anomaly is observed that we attribute to Kondo resonance between the dot and the leads.  相似文献   

15.
Scaling laws and universality play an important role in our understanding of critical phenomena and the Kondo effect. We present measurements of nonequilibrium transport through a single-channel Kondo quantum dot at low temperature and bias. We find that the low-energy Kondo conductance is consistent with universality between temperature and bias and is characterized by a quadratic scaling exponent, as expected for the spin-1/2 Kondo effect. We show that the nonequilibrium Kondo transport measurements are well described by a universal scaling function with two scaling parameters.  相似文献   

16.
Strong electron and spin correlations in a double quantum dot (DQD) can give rise to different quantum states. We observe a continuous transition from a Kondo state exhibiting a single-peak Kondo resonance to another exhibiting a double peak by increasing the interdot coupling (t) in a parallel-coupled DQD. The transition into the double-peak state provides evidence for spin entanglement between the excess electrons on each dot. Toward the transition, the peak splitting merges and becomes substantially smaller than t because of strong Coulomb effects. Our device tunability bodes well for future quantum computation applications.  相似文献   

17.
We study the transport through a quantum dot, in the Kondo Coulomb blockade valley, embedded in a mesoscopic device with finite wires. The quantization of states in the circuit that hosts the quantum dot gives rise to finite size effects. These effects make the conductance sensitive to the ratio of the Kondo screening length to the wires length and provide a way of measuring the Kondo cloud. We present results obtained with the numerical renormalization group for a wide range of physically accessible parameters.  相似文献   

18.
We theoretically analyze electronic spin transport through a triple quantum dot in series, attached to electrical contacts, where the drain contact is coupled to the central dot. We show that current rectification is observed in the device due to current blockade. The current blocking mechanism is originated by a destructive interference of the electronic wavefunction at the drain dot. There, the electrons are coherently trapped in a singlet two-electron dark state, which is a coherent superposition of the electronic wavefunction in the source dot and in the dot isolated from the contacts. Its formation gives rise to zero current and current rectification as the voltage is swept. We analyze this behavior analytically and numerically for both zero and finite magnetic dc fields. On top of that, we include phenomenologically a finite spin relaxation rate and calculate the current numerically. Our results show that triple dots in series can be designed to behave as quantum charge rectifiers.  相似文献   

19.
Linear and nonlinear transport through a quantum dot that is weakly coupled to ideal quantum leads is investigated in the parameter regime where charging and geometrical quantization effects coexist. The exact eigenstates and spins of a finite number of correlated electrons confined within the dot are combined with a rate equation. The current is calculated in the regime of sequential tunneling. The analytic solution for an Anderson impurity is given. The phenomenological charging model is compared with the quantum mechanical model for interacting electrons. The current-voltage characteristics show Coulomb blockade. The excited states lead to additional fine-structure in the current voltage characteristics. Asymmetry in the coupling between the quantum dot and the leads causes asymmetry in the conductance peaks which is reversed with the bias voltage. The spin selection rules can cause a ‘spin blockade’ which decreases the current when certain excited states become involved in the transport. In two-dimensional dots, peaks in the linear conductance can be suppressed at low temperatures, when the total spins of the corresponding ground states differ by more than 1/2. In a magnetic field, an electron number parity effect due to the different spins of the many-electron ground states is predicted in addition to the vanishing of the spin blockade effect. All of the predicted features are consistent with recent experiments.  相似文献   

20.
We measure the current and shot noise in a quantum dot in the Kondo regime to address the nonequilibrium properties of the Kondo effect. By systematically tuning the temperature and gate voltages to define the level positions in the quantum dot, we observe an enhancement of the shot noise as temperature decreases below the Kondo temperature, which indicates that the two-particle scattering process grows as the Kondo state evolves. Below the Kondo temperature, the Fano factor defined at finite temperature is found to exceed the expected value of unity from the noninteracting model, reaching 1.8±0.2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号