首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A vortex molecule is predicted in rotating two-component Bose-Einstein condensates whose internal hyperfine states are coupled coherently by an external field. A vortex in one component and one in the other are connected by a domain wall of the relative phase, constituting a "vortex molecule," which features a nonaxisymmetric (pseudo)spin texture with a pair of merons. The binding mechanism of the vortex molecule is discussed based on a generalized nonlinear sigma model and a variational ansatz. The anisotropy of vortex molecules is caused by the difference in the scattering lengths, yielding a distorted vortex-molecule lattice in fast rotating condensates.  相似文献   

2.
The observation of friction anisotropy on graphene by friction measurement at atomic scale has been reported in this paper.Atomic-scale friction measurement revealed friction anisotropy with a periodicity of 60°,which is consistent with the hexagonal periodicity of the graphene.Both experiments and theory show that the value of the friction force is related to the graphene lattice orientation,and the friction force along armchair orientation is also larger than the one along zigzag orientation.These results will play a critical role in the use of graphene to manufacture nanoscale devices.  相似文献   

3.
Selective adsorption of C60 on nanoscale Ge areas can be achieved, while neighboring Si(111) areas remain uncovered, if the whole surface is initially terminated by Bi. Fullerene chemisorption is found at Bi vacancies which form due to partial thermal desorption of the Bi surfactant. The growth rate and temperature dependence of the C60 adsorption were measured using scanning tunneling microscopy and are described consistently by a rate equation model. The selectivity of the C60 adsorption can be traced back to an easier vacancy formation in the Bi layer on top of the Ge areas compared to the Si areas. Furthermore, it is also possible to desorb C60 from Ge areas, allowing the use of C60 as a resist on the nanoscale.  相似文献   

4.
5.
6.
Physics of the Solid State - The multilayer amorphous nanostructure [(CoFeB)60C40/SiO2]200 of alternating composite and dielectric layers was obtained by ion-beam sputtering on a rotating...  相似文献   

7.
We present experiments and theory for the "bathtub vortex," which forms when a fluid drains out of a rotating cylindrical container through a small drain hole. The fast down-flow is found to be confined to a narrow and rapidly rotating "drainpipe" from the free surface down to the drain hole. Surrounding this drainpipe is a region with slow upward flow generated by the Ekman layer at the bottom of the container. This flow structure leads us to a theoretical model similar to one obtained earlier by Lundgren [J. Fluid Mech. 155, 381 (1985)]], but here including surface tension and Ekman upwelling, comparing favorably with our measurements. At the tip of the needlelike surface depression, we observe a bubble-forming instability at high rotation rates.  相似文献   

8.
ABSTRACT

Interaction forces between solid surfaces are often mitigated by adsorbed molecules that control normal and friction forces at nanoscale separations. Molecular dynamics simulations were conducted of opposing semi-ordered monolayers of united-atom chains on sliding surfaces to relate friction and normal forces to imposed sliding velocity and inter-surface separation. Practical examples include adsorbed friction-modifier molecules in automatic transmission fluids. Friction scenarios in the simulations had zero, one, or two fluid layers trapped between adsorbed monolayers. Sliding friction forces increased with sliding velocity at each stable separation. Lower normal forces were obtained than in most previous nanotribology molecular simulations and were relatively independent of sliding speed. Distinguishing average frictional force from its fluctuations showed the importance of system size. Uniform velocities were obtained in the sliding direction across each adsorbed film, with a gradient across the gap containing trapped fluid. The calculated friction stress was consistent with measurements reported using a surface forces apparatus, indicating that drag between an adsorbed layer and trapped fluid can account sufficiently for sliding friction in friction modifier systems. An example is shown in which changes in molecular organisation parallel to the surface led to a large change in normal force but no change in friction force.  相似文献   

9.
We use molecular dynamics simulations to study thermal sliding of two nanostructured surfaces separated by nanoscale water films. We find that friction at molecular separations is determined primarily by the effective free energy landscape for motion in the plane of sliding, which depends sensitively on the surface character and the molecular structure of the confined water. Small changes in the surface nanostructure can have dramatic effects on the apparent rheology. Whereas porous and molecularly rough interfaces of open carbon nanotube membranes are found to glide with little friction, a comparably smooth interface of end-capped nanotubes is effectively stuck. The addition of salt to the water layer is found to reduce the sliding friction. Surprisingly, the intervening layers of water remain fluid in all cases, even in the case of high apparent friction between the two membranes.  相似文献   

10.
We recently proposed a new nanoscale friction model based on the bristle interpretation of single asperity contacts. The model is mathematically continuous and dynamic which makes it suitable for implementation in nanomanipulation and nanorobotic modeling. In the present paper, friction force microscope (FFM) scans of muscovite mica samples and vertically aligned multi-wall carbon nanotubes (VAMWCNTs) arrays are conducted. The choice of these materials is motivated by the fact that they exibit different stick-slip behaviors. The corresponding experimental and simulation results are compared. Our nanoscale friction model is shown to represent both the regular and reverse frictional sawtooth characteristics of the muscovite mica and the VAMWCNTs, respectively.  相似文献   

11.
We present high resolution 133Cs-13C double resonance NMR data and 13C-13C NMR correlation spectra of 13C enriched samples of the polymeric phase of CsC60. These data lead to a partial assignment of the lines in the 13C NMR spectrum of CsC60 to the carbon positions on the C60 molecule. A plausible completion of the assignment can be made on the basis of an ab initio calculation. The data support the view that the conduction electron density is concentrated at the C60 "equator," away from the interfullerene bonds.  相似文献   

12.
Direct- and pulse-current (DC and PC) chromium electroplating on Cr-Mo steel were performed in a sulfate-catalyzed chromic acid solution at 50 °C using a rotating cylinder electrode (RCE). The electroplating cathodic current densities were at 30, 40, 50 and 60 A dm−2, respectively. The relationship between electroplating current efficiency and the rotating speed of the RCE was studied. The cross-sectional microstructure of Cr-deposit was examined by transmission electron microscope (TEM). Results showed that DC-plating exhibited higher current efficiency than the PC-plating under the same conditions of electroplating current density and the rotating speed. We found the critical rotating speed of RCE used in the chromium electroplating, above this rotating speed the chromium deposition is prohibited. At the same plating current density, the critical rotating speed for DC-plating was higher than that for PC-plating. The higher plating current density is, the larger difference in critical rotating speeds appears between DC- and PC-electroplating. Equiaxed grains, in a nanoscale size with lower dislocation density, nucleate on the cathodic surface in both DC- and PC-electroplating. Adjacent to the equiaxed grains, textured grains were found in other portion of chromium deposit. Fine columnar grains were observed in the DC-electroplated deposit. On the other hand, very long slender grains with high degree of preferred orientation were detected in PC-electroplated deposit.  相似文献   

13.
We studied the friction properties of four model silicate materials at the nanoscale and microscale. From nanotribology, we characterized the tribological properties at single asperity contact scale and from microtribology, we characterized the tribological properties at multi asperity contact scale. First, for each material we measured chemical composition by XPS, Young's modulus by acoustical microscopy and roughness σ by atomic force microscopy (AFM). Second, we measured the nanofriction coefficients with an AFM and the microfriction coefficients with a ball probe tribometer, for three hardnesses of the ball probe. We identified one friction mechanism at the nanoscale (sliding friction) and two friction mechanisms at the microscale (sliding friction and yielding friction). Comparison of the nano and microfriction coefficients at the same sliding friction regime shown, that the tribological properties of these materials didn’t depend on roughness.  相似文献   

14.
Scanning force microscopy (SFM) was employed to characterize C60 island films in an ultra-high vacuum (UHV). The initial growth stage of C60 on NaCl cleavage faces and nanotribological properties of this solid lubricant are investigated. In comparison to the NaCl(001) face, higher friction is measured on the C60 islands, resulting in a ratio of friction of 13 for NaClC60. The friction coefficient of the (111) oriented C60 island is determined to be 0.15±0.05. High-resolution SFM images reveal the hexagonal lattice of the unreconstructed (111) top surfaces and the overgrowth relationships of the C60 islands.  相似文献   

15.
The Manchester rotating cryostat has been used to measure the longitudinal and transverse coefficients of vortex mutual friction in the A and B phases of superfluid3He. In the B phase the dominant contribution to the mutual friction is scattering of excitations off occupied bound states in the vortex core. The A phase results are explained quantitatively by assuming that doubly quantised continuous vortices are created with a dynamics determined by the equation of motion of the orbital vectorI; the measurements enable us to put an upper limit on the orbital inertia of less than 0.01h per Cooper pair. History-dependent textural effects which had to be overcome in order to make meaningful measurements in the A phase are explained by noting that for a given rotation direction the most stable vortices can be formed more easily from one direction of uniformI texture than the other.  相似文献   

16.
We provide a new method for the localization of Aubry-Mather sets in quasi-integrable two-dimensional twist maps. Inspired by viscosity theories, we introduce regularization techniques based on the new concept of "relative viscosity and friction," which allows one to obtain regularized parametrizations of invariant sets with irrational rotation number. Such regularized parametrizations allow one to compute a curve in the phase-space that passes near the Aubry-Mather set, and an invariant measure whose density allows one to locate the gaps on the curve. We show applications to the "golden" cantorus of the standard map as well as to a more general case.  相似文献   

17.
Helium adsorbed on C(60)(+) and C(70)(+) exhibits phenomena akin to helium on graphite. Mass spectra suggest that commensurate layers form when all carbon hexagons and pentagons are occupied by one He each, but that the solvation shell does not close until 60 He atoms are adsorbed on C(60)(+), or 62 on C(70)(+). Molecular dynamics simulations of C(60)He(n)(+) at 4 K show that the commensurate phase is solid. Helium added to C(60)He(32)(+) will displace some atoms from pentagonal sites, leading to coexistence of a registered layer of immobile atoms interlaced with a nonregistered layer of mobile atoms.  相似文献   

18.
The influence of C60 additive in industrial oil on the structure of the friction surface of copper foil in a steel-copper sliding friction pair is investigated by wide-angle x-ray diffraction, scanning electron microscopy, and hardness testing. The presence of C60 in the lubricant leads to the formation of a thin film (of thickness <1000 Å) on the friction surface of the copper, where it protects the surface layers of the latter against major structural changes and helps to improve the tribological characteristics.  相似文献   

19.
随着未来信息器件朝着更小尺寸、更低功耗和更高性能方向的发展,构建器件的材料尺寸将进一步缩小.传统的"自上而下"技术在信息器件发展到纳米量级时遇到瓶颈,而气相沉积技术由于其能在原子尺度构筑纳米结构引起极大关注,被认为是最有潜力突破现有制造极限进而在原子尺度构造、搭建物质形态的"自下而上"方法.本文重点讨论适用于低维材料的原子尺度制造的分子束外延技术和原子层沉积/刻蚀技术.简要介绍相关技术中蕴含的科学原理及其在纳米信息器件加工和制造领域的应用,并探讨如何在原子尺度实现对低维功能材料厚度和微观形貌的精密控制.  相似文献   

20.
The crystal structure and orientation of As precipitates in annealed low-temperature GaAs (LT-GaAs) layers have been investigated by transmission electron microscopy. Three types of As precipitates were identified in layers grown by molecular beam epitaxy at substrate temperatures from 180° to 210° C. In the monocrystalline LT-GaAs layers small pseudocubic As precipitates (2–3 nm diameter) coherent with the GaAs lattice were observed. These precipitates lose their coherency when a certain critical size is exceeded. Precipitates of similar sizes are occasionally found for which a TEM lattice image cannot be obtained. These precipitates are believed to be amorphous. Larger As precipitates with a hexagonal structure (>4 nm diameter) were also found in the layers. These hexagonal As precipitates were observed to be largest near structural defects. The effect of these precipitates on the structure and on the electronic properties of the host GaAs is discussed.Dedicated to H.-J. Queisser on the occasion of his 60th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号