首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the game of cops and robber, the cops try to capture a robber moving on the vertices of the graph. The minimum number of cops required to win on a given graph G is called the cop number of G. The biggest open conjecture in this area is the one of Meyniel, which asserts that for some absolute constant C, the cop number of every connected graph G is at most . In a separate paper, we showed that Meyniel's conjecture holds asymptotically almost surely for the binomial random graph. The result was obtained by showing that the conjecture holds for a general class of graphs with some specific expansion‐type properties. In this paper, this deterministic result is used to show that the conjecture holds asymptotically almost surely for random d‐regular graphs when d = d(n) ≥ 3.  相似文献   

2.
We consider the localization game played on graphs, wherein a set of cops attempt to determine the exact location of an invisible robber by exploiting distance probes. The corresponding optimization parameter for a graph G is called the localization number and is written as ζ(G). We settle a conjecture of Bosek et al by providing an upper bound on the chromatic number as a function of the localization number. In particular, we show that every graph with ζ(G) ≤ k has degeneracy less than 3k and, consequently, satisfies χ(G) ≤ 3ζ(G). We show further that this degeneracy bound is tight. We also prove that the localization number is at most 2 in outerplanar graphs, and we determine, up to an additive constant, the localization number of hypercubes.  相似文献   

3.
A large class of Positional Games are defined on the complete graph on n vertices. The players, Maker and Breaker, take the edges of the graph in turns, and Maker wins iff his subgraph has a given — usually monotone — property. Here we introduce the d‐diameter game, which means that Maker wins iff the diameter of his subgraph is at most d. We investigate the biased version of the game; i.e., when the players may take more than one, and not necessarily the same number of edges, in a turn. Our main result is that we proved that the 2‐diameter game has the following surprising property: Breaker wins the game in which each player chooses one edge per turn, but Maker wins as long as he is permitted to choose 2 edges in each turn whereas Breaker can choose as many as (1/9)n1/8/(lnn)3/8. In addition, we investigate d‐diameter games for d ≥ 3. The diameter games are strongly related to the degree games. Thus, we also provide a generalization of the fair degree game for the biased case. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

4.
In ak-player, nonzero-sum differential game, there exists the possibility that a group of players will form a coalition and work together. If allk players form the coalition, the criterion usually chosen is Pareto optimality whereas, if the coalition consists of only one player, a minmax or Nash equilibrium solution is sought.In this paper, games with coalitions of more than one but less thank players are considered. Coalitive Pareto optimality is chosen as the criterion. Sufficient conditions are presented for coalitive Pareto-optimal solutions, and the results are illustrated with an example.  相似文献   

5.
We theoretically analyze the ‘cops and robber’ game for the first time in a multidimensional grid. It is shown that in an n-dimensional grid, at least n cops are necessary if one wants to catch the robber for all possible initial configurations. We also present a set of cop strategies for which n cops are provably sufficient to catch the robber. Further, we revisit the game in a two-dimensional grid and provide an independent proof of the fact that the robber can be caught even by a single cop under certain conditions.  相似文献   

6.
This paper describes a zero-sum, discrete, multistage, time-lag game in which, for one player, there is no integerk such that an optimal strategy, for a new move during play, can always be determined as a function of the pastk state positions; that is, the player requires an infinite memory. The game is a pursuit-evasion game with the payoff to the maximizing player being the time to capture.This paper is the result of work carried out at the University of Adelaide, Adelaide, Australia, under an Australian Commonwealth Postgraduate Award.The author should like to thank the referee for his valued suggestions.  相似文献   

7.
The game cops and robbers is considered on Cayley graphs of abelian groups. It is proved that if the graph has degreed, then [(d+1)/2] cops are sufficient to catch one robber. This bound is often best possible.  相似文献   

8.
We study the notion of hypertree width of hypergraphs. We prove that, up to a constant factor, hypertree width is the same as a number of other hypergraph invariants that resemble graph invariants such as bramble number, branch width, linkedness, and the minimum number of cops required to win Seymour and Thomas’s robber and cops game.  相似文献   

9.
Aigner and Fromme initiated the systematic study of the cop number of a graph by proving the elegant and sharp result that in every connected planar graph, three cops are sufficient to win a natural pursuit game against a single robber. This game, introduced by Nowakowski and Winkler, is commonly known as Cops and Robbers in the combinatorial literature. We extend this study to directed planar graphs, and establish separation from the undirected setting. We exhibit a geometric construction that shows that a sophisticated robber strategy can indefinitely evade three cops on a particular strongly connected planar‐directed graph.  相似文献   

10.
We study the Maker‐Breaker k‐clique game played on the edge set of the random graph G(n, p). In this game, two players, Maker and Breaker, alternately claim unclaimed edges of G(n, p), until all the edges are claimed. Maker wins if he claims all the edges of a k‐clique; Breaker wins otherwise. We determine that the threshold for the graph property that Maker can win this game is at , for all k > 3, thus proving a conjecture from Ref. [Stojakovi? and Szabó, Random Struct Algor 26 (2005), 204–223]. More precisely, we conclude that there exist constants such that when the game is Maker's win a.a.s., and when it is Breaker's win a.a.s. For the triangle game, when k = 3, we give a more precise result, describing the hitting time of Maker's win in the random graph process. We show that, with high probability, Maker can win the triangle game exactly at the time when a copy of K5 with one edge removed appears in the random graph process. As a consequence, we are able to give an expression for the limiting probability of Maker's win in the triangle game played on the edge set of G(n, p). © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 45, 318–341, 2014  相似文献   

11.
In this paper, we present a generalization of the concept of balanced game for finite games. Balanced games are those having a nonempty core, and this core is usually considered as the solution of the game. Based on the concept of k-additivity, we define the so-called k-balanced games and the corresponding generalization of core, the k-additive core, whose elements are not directly imputations but k-additive games. We show that any game is k-balanced for a suitable choice of k, so that the corresponding k-additive core is not empty. For the games in the k-additive core, we propose a sharing procedure to get an imputation and a representative value for the expectations of the players based on the pessimistic criterion. Moreover, we look for necessary and sufficient conditions for a game to be k-balanced. For the general case, it is shown that any game is either balanced or 2-balanced. Finally, we treat the special case of capacities.  相似文献   

12.
In this paper, we study the vertex pursuit game of Cops and Robbers where cops try to capture a robber on the vertices of the graph. The minimum number of cops required to win on a given graph G is the cop number of G. We present asymptotic results for the game of Cops and Robber played on a random graph G(n,p) for a wide range of p = p(n). It has been shown that the cop number as a function of an average degree forms an intriguing zigzag shape. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2010  相似文献   

13.
We consider the following two-player game, parametrised by positive integers n and k. The game is played between Painter and Builder, alternately taking turns, with Painter moving first. The game starts with the empty graph on n vertices. In each round Painter colours a vertex of her choice by one of the k colours and Builder adds an edge between two previously unconnected vertices. Both players must adhere to the restriction that the game graph is properly k-coloured. The game ends if either all n vertices have been coloured, or Painter has no legal move. In the former case, Painter wins the game; in the latter one, Builder is the winner. We prove that the minimal number of colours k=k(n) allowing Painter’s win is of logarithmic order in the number of vertices n. Biased versions of the game are also considered.  相似文献   

14.
We consider the game of cops and robber played on the Cartesian product of two trees. Assuming the players play perfectly, it is shown that if there are two cops in the game, then the length of the game (known as the 2-capture time of the graph) is equal to half the diameter of the graph. In particular, the 2-capture time of the m×n grid is proved to be .  相似文献   

15.
The q-round Rényi–Ulam pathological liar game with k lies on the set [n]{1,…,n} is a 2-player perfect information zero sum game. In each round Paul chooses a subset A[n] and Carole either assigns 1 lie to each element of A or to each element of [n]A. Paul wins if after q rounds there is at least one element with k or fewer lies. The game is dual to the original Rényi–Ulam liar game for which the winning condition is that at most one element has k or fewer lies. Define to be the minimum n such that Paul can win the q-round pathological liar game with k lies and initial set [n]. For fixed k we prove that is within an absolute constant (depending only on k) of the sphere bound, ; this is already known to hold for the original Rényi–Ulam liar game due to a result of J. Spencer.  相似文献   

16.
We consider the game of Cops and Robbers played on finite and countably infinite connected graphs. The length of games is considered on cop-win graphs, leading to a new parameter, the capture time of a graph. While the capture time of a cop-win graph on n vertices is bounded above by n−3, half the number of vertices is sufficient for a large class of graphs including chordal graphs. Examples are given of cop-win graphs which have unique corners and have capture time within a small additive constant of the number of vertices. We consider the ratio of the capture time to the number of vertices, and extend this notion of capture time density to infinite graphs. For the infinite random graph, the capture time density can be any real number in [0,1]. We also consider the capture time when more than one cop is required to win. While the capture time can be calculated by a polynomial algorithm if the number k of cops is fixed, it is NP-complete to decide whether k cops can capture the robber in no more than t moves for every fixed t.  相似文献   

17.
We study the core of a non-atomic game v which is uniformly continuous with respect to the DNA-topology and continuous at the grand coalition. Such a game has a unique DNA-continuous extension on the space B 1 of ideal sets. We show that if the extension is concave then the core of the game v is non-empty iff is homogeneous of degree one along the diagonal of B 1. We use this result to obtain representation theorems for the core of a non-atomic game of the form v=f^μ where μ is a finite dimensional vector of measures and f is a concave function. We also apply our results to some non-atomic games which occur in economic applications. Received May 1998/Revised version September 1998  相似文献   

18.
We call the digraph D an k-colored digraph if the arcs of D are colored with k colors. A subdigraph H of D is called monochromatic if all of its arcs are colored alike. A set NV(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices u,vN, there is no monochromatic directed path between them, and (ii) for every vertex x∈(V(D)?N), there is a vertex yN such that there is an xy-monochromatic directed path. In this paper, we prove that if D is an k-colored digraph that can be partitioned into two vertex-disjoint transitive tournaments such that every directed cycle of length 3,4 or 5 is monochromatic, then D has a kernel by monochromatic paths. This result gives a positive answer (for this family of digraphs) of the following question, which has motivated many results in monochromatic kernel theory: Is there a natural numberlsuch that if a digraphDisk-colored so that every directed cycle of length at mostlis monochromatic, thenDhas a kernel by monochromatic paths?  相似文献   

19.
A population of players repeatedly plays an n strategy symmetric game. Players update their strategies by sampling the behavior of k opponents and playing a best response to the distribution of strategies in the sample. Suppose the game possesses a -dominant strategy which is initially played by a positive fraction of the population. Then if the population size is large enough, play converges to the -dominant equilibrium with arbitrarily high probability. Received December 1999/Revised version November 2000  相似文献   

20.
Very Asymmetric Marking Games   总被引:1,自引:0,他引:1  
We investigate a competitive version of the coloring number of a graph G = (V, E). For a fixed linear ordering L of V let s (L) be one more than the maximum outdegree of G when G is oriented so that xy if x < L y. The coloring number of G is the minimum of s (L) over all such orderings. The (a, b)-marking game is played on a graph G = (V, E) as follows. At the start all vertices are unmarked. The players, Alice and Bob, take turns playing. A play consists of Alice marking a unmarked vertices or Bob marking b unmarked vertices. The game ends when there are no remaining unmarked vertices. Together the players create a linear ordering L of V defined by x < y if x is marked before y. The score of the game is s (L). The (a, b)-game coloring number of G is the minimum score that Alice can obtain regardless of Bob’s strategy. The usual (1, 1)-marking game is well studied and there are many interesting results. Our main result is that if G has an orientation with maximum outdegree k then the (k, 1)-game coloring number of G is at most 2k + 2. This extends a fundamental result on the (1, 1)-game coloring number of trees. We also construct examples to show that this bound is tight for many classes of graphs. Finally we prove bounds on the (a, 1)-game coloring number when a < k.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号