首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatially resolved surface photovoltage spectroscopy (SRSPS) was employed to obtain direct evidence for highly anisotropic photogenerated charge separation on different facets of a single BiVO4 photocatalyst. Through the controlled synthesis of a single crystal with preferentially exposed {010} facets, highly anisotropic photogenerated hole transfer to the {011} facet of single BiVO4 crystals was observed. The surface photovoltage signal intensity on the {011} facet was 70 times stronger than that on the {010} facets. The influence of the built‐in electric field in the space charge region of different facets on the anisotropic photoinduced charge transfer in a single semiconductor crystal is revealed.  相似文献   

2.
The efficiency of photocatalytic overall water splitting reactions is usually limited by the high energy barrier and complex multiple electron-transfer processes of the oxygen evolution reaction (OER). Although bismuth vanadate (BiVO4) as the photocatalyst has been developed for enhancing the kinetics of the water oxidation reaction, it still suffers from challenges of fast recombination of photogenerated electron-hole pairs and poor photocatalytic activity. Herein, six MII-CoIII Prussian blue analogues (PBAs) (M=Mn, Fe, Co, Ni, Cu and Zn) cocatalysts are synthesized and deposited on the surface of BiVO4 for boosting the surface catalytic efficiency and enhancing photogenerated carries separation efficiency of BiVO4. Six MII-CoIII PBAs@BiVO4 photocatalysts all demonstrate increased photocatalytic water oxidation performance compared to that of BiVO4 alone. Among them, the Co−Co PBA@BiVO4 photocatalyst is employed as a representative research object and is thoroughly characterized by electrochemistry, electronic microscope as well as multiple spectroscopic analyses. Notably, BiVO4 coupling with Co−Co PBA cocatalyst could capture more photons than that of pure BiVO4, facilitating the transfer of photogenerated charge carriers between BiVO4 and Co−Co PBA as well as the surface catalytic efficiency of BiVO4. Overall, this work would promote the synthesis strategy development for exploring new types of composite photocatalysts for water oxidation.  相似文献   

3.
BiVO4 has emerged as a promising material for solar water splitting. The poor ability of charge transport and separation always limits its performance for photoelectrochemical water splitting. Herein, we coupled n-type BiVO4 with p-type LaFeO3 and LaCoO3, achieving a photocurrent more than two times as high as bare BiVO4 at 1.23 V versus a reversible hydrogen electrode. Also, the onset potential was negatively shifted about 260 mV. The promotion of performance is mainly because the space charge layer in BiVO4 is broadened, and the band bend is enhanced, which facilitates the separation and transport of photo-generated charges.  相似文献   

4.
以NH4F为掺杂前体,采用简单的一步醇-水热法制备了F掺杂BiVO4光催化剂。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-Vis)和光致发光光谱(PL)表征了这些光催化剂的物理化学性质。在少量H2O2存在条件下,以可见光照射下光催化降解苯酚的反应测定了这些光催化剂的催化活性。研究表明,相较于未掺杂的BiVO4样品而言,F掺杂BiVO4样品不仅仍保留了单斜结构,而且有更高的结晶度、表面氧空位密度和光生电荷载流子分离效率,更强的光吸收和更低的带隙能。在这些F掺杂BiVO4样品中,以nF/nBi的理论值为1.0且带隙能为2.43 eV的F掺杂BiVO4样品的光催化活性最好(90 min内苯酚的降解率可达95%)。这一优良的光催化性能与其具有最高的结晶度、表面氧空位密度和光生电荷载流子分离效率,最强的光吸收和最低的带隙能有关。  相似文献   

5.
张宇  林申  张钰  宋溪明 《物理化学学报》2013,29(11):2399-2404
利用水热法合成了花状和球状ZnO微纳材料,并与硝酸铋和偏钒酸铵溶液体系反应构筑了ZnO/BiVO4-V2O5复合体系.利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)及X射线衍射(XRD)对材料进行了系统的表征.利用表面光伏(SPV)、表面光电流(SPC)和瞬态光伏(TPV)技术研究了ZnO/BiVO4-V2O5表面光生电荷的产生和传输机制.结果显示该复合材料在可见区产生了良好的光电响应,获得了较高的光生载流子的分离效率,光生电荷的寿命也同时增加.在单色弱可见光(波长500 nm)照射下,复合材料产生良好重复性的表面光电流响应.  相似文献   

6.
Monoclinic bismuth vanadate (BiVO4) has been used as an efficient photoanode material for photoelectrochemical water oxidation owing to its suitable band gap and nontoxicity. Nevertheless, the practical application of BiVO4 photoanode has been severely limited by the surface charge recombination and sluggish kinetic, which leads to the obtained photoactivity of BiVO4 is much lower than its theoretical value. In this case, ZnCoFe-LDH thin layer is conformally decorated on the porous BiVO4 photoanode through a simple electrodeposition process. The results show that a boosted photoactivity and a remarkably enhanced photocurrent density (3.43 mA cm−2 at 1.23 VRHE) are attained for BiVO4/ZnCoFe-LDH. In addition, the optimized BiVO4/ZnCoFe-LDH photoanode exhibits significant negative shift in the onset potential (0.51 VRHE to 0.21 VRHE), promotes charge separation efficiency (49.3% to 60.4% in the bulk, 29.6% to 61.9% on the surface at 1.23 VRHE) and enhanced IPCE efficiency (25.5% to 54.7% at 425 nm) compared with that of bare BiVO4 photoanode. It is demonstrated that the boosted photoactivity of BiVO4/ZnCoFe-LDH photoanode is mainly ascribed to the synergy effects of the formation of p-n heterojunction between ZnCoFe-LDH and BiVO4 to accelerate the photogenerated charge transfer and separation, broaden light absorption, as well as promote the surface water oxidation kinetics.  相似文献   

7.
采用水热法合成具有四角星形貌的钒酸铋,再将钒酸铋浸渍在碱溶液里二次水热,制备出BiVO_4/Bi_2O_3催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM),紫外-可见漫反射(UV-Vis DRS)等方法对样品进行表征。可见光下,BiVO_4/Bi_2O_3复合物的光催化降解罗丹明B性能及光电流响应均优于纯BiVO_4。这是由于BiVO_4/Bi_2O_3复合材料形成了异质结构,有效抑制了光生电子与空穴的复合效率。  相似文献   

8.
采用水热法合成具有四角星形貌的钒酸铋,再将钒酸铋浸渍在碱溶液里二次水热,制备出BiVO4/Bi2O3催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM),紫外-射(UV-Vis DRS)等方法征。可见光下,BiVO4/Bi2O3复合物的光催化降解丹明B性能及光电优于纯BiVO4。BiVO4/Bi2O3复合材料形成了异质结构,有效抑制了光电子与空穴的复合效率。  相似文献   

9.
A novel photoelectrochemical (PEC) aptasensor with graphitic-phase carbon nitride quantum dots (g-C3N4; QDs) and reduced graphene oxide (rGO) was fabricated. The g-C3N4 QDs possess enhanced emission quantum yield (with an emission peak at 450 nm), improved charge separation ability and effective optical absorption, while rGO has excellent electron transfer capability. Altogether, this results in improved PEC performance. The method is making use of an aptamer against sulfadimethoxine (SDM) that was immobilized on electrode through π stacking interaction. Changes of the photocurrent occur because SDM as a photogenerated hole acceptor can further accelerate the separation of photoexcited carriers. Under optimized conditions and at an applied potential of +0.2 V, the aptasensor has a linear response in the 0.5 nM to 80 nM SDM concentration range, with a 0.1 nM detection limit (at S/N =?3). The method was successfully applied to the analysis of SDM in tap, lake and waste water samples.
Graphical abstract Graphitic-phase carbon nitride (g-C3N4) quantum dots (QDs) and reduced graphene oxide (rGO) were used to modify fluorine-doped SnO2 (FTO) electrodes for use in a photoelectrochemical (PEC) aptasensor. SDM oxidized by the hole on valance band (VB) of g-C3N4 QDs promote the separation of electron in the conductive band (CB), which made the changes of photocurrent signal.
  相似文献   

10.
In this study, we prepared nanoparticles of the visible light-responsive photocatalyst, Bi2O3 entrapped in anatase TiO2 nanotubes (Bi2O3-in-TNTs) via a vacuum-assisted precursor-filling process followed by annealing. Owing to the unique tubular electronic structure of TiO2 nanotubes, the interior of the nanotube is in an electron-deficient state, which was confirmed by XPS spectra and H2-TPR. Electrochemical impedance studies showed that the Bi2O3-in-TNTs demonstrated a more efficient separation of photogenerated carriers than when Bi2O3 nanoparticles were deposited on the outer wall of TiO2 nanotubes (Bi2O3-out-TNTs). Due to the confinement effect of TiO2 nanotubes, which inhibits photogenerated carriers’ recombination, the Bi2O3-in-TNTs exhibited a better photocatalytic performance for the photo-degradation of methyl orange under visible light compared to Bi2O3-out-TNTs.  相似文献   

11.
Bismuth vanadate (BiVO4) as a metal oxidation semiconductor has stimulated extensive attention in the photocatalytic water splitting field. However, the poor transport ability and easy recombination of charge carriers limit photocatalytic water oxidation activity of pure BiVO4. Herein, the photocatalytic activity of BiVO4 is enhanced via adjusting its morphology and combination co-catalyst. First, the Cu-BiVO4 was synthesized by copper doping to control the growth of {110} facet of BiVO4, which is regarded for the separation of photo-generated charge carriers. Then the CoOx in-situ generated from K6[SiCoII(H2O)W11O39] ⋅ 16H2O was photo-deposited on Cu-BiVO4 surface as co-catalyst to speed up reaction kinetics. Cu-BiVO4@CoOx hybrid catalyst shows highest photocatalytic activity and best stability among all the prepared catalysts. Oxygen evolution is about 34.6 μmol in pH 4 acetic acid buffer under 420 nm LED irradiation, which is nearly 20 times higher than that of pure BiVO4. Apparent quantum efficiency (AQE) in 1 h and O2 yield are 1.83% and 23.1%, respectively. O2 evolution amount nearly maintains the original value even after 5 cycles.  相似文献   

12.
In this study, a novel ternary AgI/ZnIn2S4/BiVO4(AZB) composite photocatalyst was successfully prepared by hydrothermal method and in-situ precipitation method. The as-synthesized samples were characterized by XRD, SEM, TEM, XPS and so on, and the photocatalytic activity was evaluated through photocatalytic degradation of tetracycline (TC) under visible light irradiation. When the molar ratio of Bi to Ag was 1:1, the degradation rate of TC can reach 91.44 % within 150 min. The AZB heterojunction demonstrated outstanding efficiency with the apparent reaction rate constants of 0.02118 min?1 for TC removal, was 4.68, 3.27 and 3.27 times higher than that of pure BiVO4, AgI and ZnIn2S4. Based on active species trapping experiments and ESR analysis, a dual Z-Scheme pathways among BiVO4, AgI and ZnIn2S4 for effective separation of photogenerated charges was recommended. This work provided a promising insight for the design of ternary dual Z-scheme heterojunction with multilevel electron transfer to present greater photo-absorption, charge separation, and photodegradation for environmental decontamination.  相似文献   

13.
BiVO4-GO-PVDF (PVDF = Polyvinylidene Difluoride) photocatalyst is successfully synthesized by ultrasonication method and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy techniques. Morphology of BiVO4-GO-PVDF looks like a human embryo embedded inside an amniotic sac. Photocatalytic performance of BiVO4-GO-PVDF for decolorization of methylene blue is investigated. BiVO4-GO-PVDF system reveals enhanced photocatalytic activity degradation of methylene blue (MB), Rhodamine B (RhB) & Safranin-O (SO) in water under visible light irradiation as compared to the pure BiVO4 catalyst, BiVO4 & PTFE decorated on the graphene sheet. The experimental result reveals that the covering of graphene sheets in this composite catalyst enhances photocatalytic performance under visible light. This enhanced activity is mainly attributed to effective quenching of the photogenerated electron-hole pairs confirmed by photoluminescence spectra. Trapping experiments of radicals and holes were conducted to detect reactive species generated in the photocatalytic system, experimental results revealed that direct hole oxidation reaction is obviously dominant during photocatalytic reactions on the BiVO4-GO-PVDF system.  相似文献   

14.
Composite photocatalyst films have been fabricated by depositing BiVO4 upon TiO2 via a sequential ionic layer adsorption reaction (SILAR) method. The photocatalytic materials were investigated by XRD, TEM, UV/Vis diffuse reflectance, inductively coupled plasma optical emission spectrometry (ICP‐OES), XPS, photoluminescence and Mott–Schottky analyses. SILAR processing was found to deposit monoclinic‐scheelite BiVO4 nanoparticles onto the surface, giving successive improvements in the films′ visible light harvesting. Electrochemical and valence band XPS studies revealed that the prepared heterojunctions have a type II band structure, with the BiVO4 conduction band and valence band lying cathodically shifted from those of TiO2. The photocatalytic activity of the films was measured by the decolourisation of the dye rhodamine 6G using λ>400 nm visible light. It was found that five SILAR cycles was optimal, with a pseudo‐first‐order rate constant of 0.004 min?1. As a reference material, the same SILAR modification has been made to an inactive wide‐band‐gap ZrO2 film, where the mismatch of conduction and valence band energies disallows charge separation. The photocatalytic activity of the BiVO4–ZrO2 system was found to be significantly reduced, highlighting the importance of charge separation across the interface. The mechanism of action of the photocatalysts has also been investigated, in particular the effect of self‐sensitisation by the model organic dye and the ability of the dye to inject electrons into the photocatalyst′s conduction band.  相似文献   

15.
Co-doped BiVO4, a visible-light-responsive photocatalytic semiconductor, was synthesized using a microwave hydrothermal method. The doped sample exhibited much higher photocatalytic activity for malachite green degradation under visible light irradiation than undoped BiVO4. Similarly, improved inactivation efficiency toward Escherichia coli and Chlamydomonas pulsatilla (green tide) were observed with Co-doped BiVO4. The degradation of malachite green by Co-doped BiVO4 reaches 99% within 90 min irradiation to visible light. Similarly, the inactivation of Escherichia coli reaches 81.3% in 5 h and Chlamydomonas pulsatilla reaches 65.6% in 1 h irradiation to visible light. The enhanced photoactivity is believed to be due to the increment of the visible light absorption range by narrowing the band gap energy. In addition, the highly exposed reactive (010) facets can efficiently capture the photoinduced electrons, promote charge separation, and reduce recombination probability. Thus, these findings provide mechanistic insight into the effectiveness of Co-doped BiVO4 semiconductors for the treatment of wastewater that contains industrial effluents and microorganisms.  相似文献   

16.
This work confirms the presence of a large facet‐dependent photocatalytic activity of Cu2O crystals through sparse deposition of gold particles on Cu2O cubes, octahedra, and rhombic dodecahedra. Au‐decorated Cu2O rhombic dodecahedra and octahedra showed greatly enhanced photodegradation rates of methyl orange resulting from a better separation of the photogenerated electrons and holes, with the rhombic dodecahedra giving the best efficiency. Au–Cu2O core–shell rhombic dodecahedra also displayed a better photocatalytic activity than pristine rhombic dodecahedra. However, Au‐deposited Cu2O cubes, pristine cubes, and Au‐deposited small nanocubes bound by entirely {100} facets are all photocatalytically inactive. X‐ray photoelectron spectra (XPS) showed identical copper peak positions for these Au‐decorated crystals. Remarkably, electron paramagnetic resonance (EPR) measurements indicated a higher production of hydroxyl radicals for the photoirradiated Cu2O rhombic dodecahedra than for the octahedra, but no radicals were produced from photoirradiated Cu2O cubes. The Cu2O {100} face may present a high energy barrier through its large band edge bending and/or electrostatic repulsion, preventing charge carriers from reaching to this surface. The conventional photocatalysis model fails in this case. The facet‐dependent photocatalytic differences should be observable in other semiconductor systems whenever a photoinduced charge‐transfer process occurs across an interface.  相似文献   

17.
采用一步水热法制备Bi2MoO6/BiVO4复合光催化剂. 利用X 射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、高分辨透射电子显微镜(HRTEM)等手段对其晶体结构和微观结构进行了表征. 结果表明, Bi2MoO6纳米粒子沉积在BiVO4纳米片表面从而形成异质结结构. 紫外-可见漫反射光谱(UV-Vis DRS)表明所制备的Bi2MoO6/BiVO4异质结较纯相Bi2MoO6和BiVO4对可见光吸收更强. 由于形成异质结结构及其光吸收性能使Bi2MoO6/BiVO4 光催化活性有较大提高. 可见光下(λ>420 nm)光催化降解罗丹明B (RhB)实验结果表明,Bi2MoO6/BiVO4光催化活性较纯相Bi2MoO6和BiVO4高. Bi2MoO6/BiVO4样品光催化性能提高的原因是Bi2MoO6和BiVO4形成异质结, 从而有效抑制光生电子-空穴对的复合, 增大了可见光吸收范围及比表面积.  相似文献   

18.
Porous peanut-like TiO2/BiVO4 composite nanostructures were synthesized via a template-free hydrothermal process with bismuth nitrate, ammonium metavanadate and anatase TiO2 as raw materials. The crystal structures, morphologies, and optical properties of the as-prepared samples were characterized by X-ray powder diffraction, transmission electron microscope, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–visible absorption spectra. Simulated sun-light induced photocatalytic degradation of Rhodamine B by porous peanut-like TiO2/BiVO4 nanostructures in the absence and presence of H2O2 has been investigated, and the results show these porous composite nanostructures with higher photocatalytic activity than pure BiVO4 and anatase TiO2. When TiO2/BiVO4 heterostructures were used as the photocatalysts under simulated sun-light irradiation, BiVO4 could act as a sensitizer to absorb the visible light. Meanwhile, coupling different band-gap semiconductors of TiO2 and BiVO4, the compound facilitate separation of the photogenerated carriers under the internal field induced by the different electronic band structures of semiconductors.  相似文献   

19.
采用盐酸水溶液处理BiVO4 的方法获得增强的光催化活性. 在0.1 mol·L-1 酸溶液中浸渍反应6 h,BiVO4 的可见光催化降解苯酚的活性提高了3.5 倍. 采用X 射线衍射(XRD), 扫描电镜(TEM)和漫反射光谱(DRS)等表征手段研究处理后样品的晶相组成和表面形貌, 结合不同酸和氯化物处理的对照实验, 结果表明,在H+和Cl-的协同作用下, BiVO4表面部分溶出并以BiOCl 沉积, 形成了表面具有凹陷沟壑的BiVO4颗粒与片状结构BiOCl 的复合物. 采用悬浮液光电压法测定BiOCl 平带电位, 通过BiVO4和BiOCl 的能带分析及其混合颗粒的光催化活性测试, 确证二者间不存在颗粒间电子转移效应. 增强的光催化活性主要归因于BiVO4表面形成了有助于光生电荷迁移的凹凸不平结构. 这种表面处理方法有望成为一种增强半导体化合物光催化活性的有效途径.  相似文献   

20.
In this work, samples consisting of BiVO4 with exposed (040) facets coupled with Bi2S3 (Bi2S3/BiVO4) were prepared through a one-pot hydrothermal method, using ethylenediaminetetraacetic acid as directing agent and L-cysteine as sulfur source and soft template. X-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy measurements indicated that the Bi2S3 content had a significant influence on the growth of (040) and (121) facets as well as on the morphology of the Bi2S3/BiVO4 samples. When the Bi2S3 content reached 1 mmol, the Bi2S3/BiVO4 samples exhibited a peony-like morphology. The results of transient photocurrent tests and electrochemical impedance spectroscopy measurements confirmed that a more effective charge separation and a faster interfacial charge transfer occurred in Bi2S3/BiVO4 than BiVO4. The enhanced photocatalytic activity of the Bi2S3/BiVO4 samples could be attributed to the improved absorption capability in the visible light region and the enhanced electron-hole pair separation efficiency due to the formation of the Bi2S3/BiVO4 heterostructure. In addition, the Bi2S3/BiVO4 samples showed relative stability and reusability. The simple method presented in this work could be used to fabricate composite photocatalysts with high activity for different applications, such as photocatalytic degradation of organic pollutants, photocatalytic splitting of water, and photocatalytic reduction of carbon dioxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号