首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The temperature dependence of the anisotropy parameter of upper critical field γHc2(T)=H_{c2}||(T)/H_{c2}^{\bot}(T) and London penetration depth γλ(T)=λ_{\perp} (T)/λ_{\bot} (T) are calculated using two-band Ginzburg-Landau theory for layered superconductors. It is shown that, with decreasing temperature the anisotropy parameter γ_{H_{c2}}(T) is increased, while theLondon penetration depth anisotropy γλ(T) reveals n opposite behavior.Results of our calculations are in agreement with experimental datafor single crystal MgB2 nd with other calculations. Results of an analysis of magnetic field Hc1 in a single vortex between superconducting layers are also presented.  相似文献   

2.
Single-crystal neutron diffraction studies on superconductors A(2)Fe(4)Se(5), where A=Rb, Cs, (Tl, Rb), and (Tl, K) (T(c) ~ 30 K), uncover the same Fe vacancy ordered crystal structure and the same block antiferromagnetic order as in K(2)Fe(4)Se(5). The Fe order-disorder transition occurs at T(S)=500-578 K, and the antiferromagnetic transition at T(N) = 471-559 K with an ordered magnetic moment ~3.3μ(B)/Fe at 10 K. Thus, all recently discovered A intercalated iron selenide superconductors share the common crystalline and magnetic structure, which are very different from previous families of Fe-based superconductors, and constitute a distinct new 245 family.  相似文献   

3.
Effects of magnetic fields (applied along the c axis) on static spin correlation were studied for the electron-doped superconductors Pr1-xLaCexCuO4 with x=0.11 (T(c)=25 K) and x=0.15 (T(c)=16 K) by neutron-scattering measurements. In the x=0.11 sample, which is located near the antiferromagnetic (AF) and superconducting phase boundary, a commensurate magnetic order develops below around T(c) at zero field. Upon applying a magnetic field up to 9 T both the magnetic intensity and the onset temperature of the order increase with the maximum field effect at approximately 5 T. In contrast, in the overdoped x=0.15 sample any static AF order is neither observed at zero field nor induced by the field up to 8.5 T. Difference and similarity of the field effect between the hole- and electron-doped high-T(c) cuprates are discussed.  相似文献   

4.
An inelastic neutron scattering study of overdoped Bi(2)Sr(2)CaCu(2)O(8+delta) ( T(c) = 83 K) has revealed a resonant spin excitation in the superconducting state. The mode energy is E(res) = 38.0 meV, significantly lower than in optimally doped Bi(2)Sr(2)CaCu(2)O(8+delta) ( T(c) = 91 K, E(res) = 42.4 meV). This observation, which indicates a constant ratio E(res)/k(B)T(c) approximately 5.4, helps resolve a long-standing controversy about the origin of the resonant spin excitation in high temperature superconductors.  相似文献   

5.
We report low-temperature specific-heat studies on the single-crystalline ternary-iron silicide superconductor Lu(2)Fe(3)Si(5) with T(c)=6.1 K down to approximately T(c)/20. We confirm a reduced normalized jump in specific heat at T(c), and find that the specific heat divided by temperature C/T shows a sudden drop at approximately T(c)/5 and goes to zero with further decreasing temperature. These results indicate the presence of two distinct superconducting gaps in Lu(2)Fe(3)Si(5), similar to the typical two-gap superconductor MgB(2). We also report Hall coefficients, band structure calculations, and the anisotropy of upper critical fields for Lu(2)Fe(3)Si(5), which support the anisotropic multiband nature and reinforce the existence of two superconducting gaps in Lu(2)Fe(3)Si(5).  相似文献   

6.
Magnetization measurements under hydrostatic pressure up to 8 kbar in the pyrochlore superconductor RbOs2O6 (T(c) approximately or equal 6.3 K at p=0) were carried out. A positive pressure effect on T(c) with dT(c)/dp=0.090(3) K/kbar was observed, whereas no pressure effect on the magnetic penetration depth lambda was detected. The pressure independent ratio 2 Delta(0)/k(B)T(c)=3.72(2) (Delta(0) is the superconducting gap at zero temperature) was found to be close to the BCS value 3.52. Magnetization and muon-spin rotation measurements of lambda(T) indicate that RbOs2O6 is an adiabatic s-wave BCS-type superconductor. The value of lambda extrapolated to zero temperature and ambient pressure was estimated to be 230(30) nm.  相似文献   

7.
We successfully synthesized La-?and Sm-doped phenanthrene powder samples and observed superconductivity in them at T(c) around 6?K. The T(c)s are 6.1?K for La(1) phenanthrene and 6.0?K for Sm(1) phenanthrene, which are enhanced by about 1 and 0.5?K compared to those in A(3) phenanthrene (A?=?K and Rb) and in Ae(1.5) phenanthrene (Ae?=?Sr and Ba) superconductors, respectively. The superconductive shielding fractions for La(1) phenanthrene and Sm(1) phenanthrene are 46.1% and 49.8% at 2?K, respectively. The small effect of doping with the magnetic ion Sm(3+) on T(c) and the positive pressure dependence coefficient of T(c) strongly suggest unconventional superconductivity in the doped phenanthrene superconductors. The charge transfer to organic molecules from dopants of La and Sm induces a redshift of 7?cm(-1) per electron for the mode at 1441?cm(-1) in the Raman spectra, which is almost the same as those observed in A(3) phenanthrene (A?=?K and Rb) and Ae(1.5) phenanthrene (Ae?=?Sr and Ba) superconductors.  相似文献   

8.
(13)C nuclear magnetic resonance measurements were performed on κ-(BEDT-TTF)(2)Cu(NCS)(2), with the external field placed parallel to the quasi-2D conducting layers. The absorption spectrum is used to determine the electronic spin polarization M(s) as a function of external field H at a temperature T=0.35 K. A discontinuity in the derivative dM(s)/dH at an applied field of H(s)=213±3 kOe is taken as evidence for a Zeeman-driven transition within the superconducting state and stabilization of inhomogeneous superconductivity.  相似文献   

9.
Intrinsic tunneling spectroscopy in high magnetic field (H) is used for a direct test of superconducting features in the quasiparticle density of states of pure Bi2212 and intercalated HgBr2-Bi2212 high- T(c) superconductors. We were able to distinguish with great clarity two coexisting gaps: (i) the superconducting gap, which closes as H-->H(c2)(T), and (ii) the c-axis pseudogap, which does not change either with H or with T. Strikingly different H dependencies, together with previously observed different temperature dependencies of the two gaps, speak against a superconducting origin of the pseudogap.  相似文献   

10.
We report on results of our theoretical study of magnetic field induced changes of the c-axis infrared response of bilayer cuprate superconductors using the phenomenological multilayer model involving the conductivity of the spacing layers and that of the bilayer units. For H perpendicular to the planes, the local conductivities have been expressed in terms of a two-fluid approximation--as weighted averages of the superconducting state ones and the normal state ones representing contributions of the vortex cores, the weight of the latter increasing linearly with the field. This allows us to reproduce and interpret the fast decrease with increasing H of the well known 400 cm(-1) peak (transverse plasma mode) in the c-axis conductivity, observed by LaForge and co-workers. For the local conductivities of underdoped YBa(2)Cu(3)O(7-δ) with T(c)=58 K reported by Dubroka and co-workers and the fraction of the normal state (T ≈ T(c)) component given by (μ(0)H/25 T), the computed field induced changes of the reflectivity are in quantitative agreement with the data. This suggests that the response at H=0 and T ≈ T(c) is close to that at H=25 T < H(c2) and T ? T(c), in accord with theories attributing the above T(c) state to that of a superconductor lacking long-range phase coherence. Also discussed are changes of the response induced by H parallel to the CuO(2) planes.  相似文献   

11.
We report a Cu -edge resonant inelastic x-ray scattering (RIXS) study of charge-transfer excitations in the 2-8 eV range in the structurally simple compound HgBa(2)CuO(4+delta) at optimal doping (T(c)=96.5 K). The spectra exhibit a significant dependence on the incident photon energy which we carefully utilize to resolve a multiplet of weakly dispersive (<0.5 eV) electron-hole excitations, including a mode at 2 eV. The observation of this 2 eV excitation suggests the existence of a remnant charge-transfer gap deep in the superconducting phase. Quite generally, our results, which include additional data for the Mott insulator La(2)CuO(4), demonstrate the importance of exploring the incident photon-energy dependence of the RIXS cross section.  相似文献   

12.
We report low-temperature thermal expansion measurements on the tetragonal heavy-fermion superconductors CeMIn5 (M=Ir,Co) in magnetic fields up to 8 T which allow for the analysis of the uniaxial pressure effects on both normal-state and superconducting properties. Our study reveals that T(c) is strongly affected by at least two factors, the lattice anisotropy and the 4f-conduction-electron hybridization strength which is most sensitive to c-axis lattice distortions. Non-Fermi-liquid behavior caused by quantum-critical fluctuations is observed for both systems, most pronounced for CeCoIn5.  相似文献   

13.
We determined electronic relaxation times via pump-probe optical spectroscopy using sub-15 fs pulses for the normal state of two different cuprate superconductors. We show that the primary relaxation process is the electron-phonon interaction and extract a measure of its strength, the second moment of the Eliashberg function λ[ω2] = 800 ± 200 meV2 for La(1.85)Sr(0.15)CuO4 and λ[ω2] = 400 ± 100 meV2 for YBa(2)Cu(3)O(6.5). These values suggest a possible fundamental role of the electron-phonon interaction in the superconducting pairing mechanism.  相似文献   

14.
We report Sb-NQR results which evidence a heavy-fermion (HF) behavior and an unconventional superconducting (SC) property in Pr(Os4Sb12 with T(c)=1.85 K. The temperature (T) dependence of nuclear-spin-lattice-relaxation rate, 1/T(1), and NQR frequency unravel a low-lying crystal-electric-field splitting below T0 approximately 10 K, associated with Pr3+(4f(2))-derived ground state. In the SC state, 1/T(1) shows neither a coherence peak just below T(c) K nor a T3-like power-law behavior observed for anisotropic HF superconductors with the line-node gap. The isotropic energy gap with its size Delta/k(B)=4.8 K seems to open up across T(c) below T(*) approximately 2.3 K. It is surprising that Pr(Os4Sb12 looks like an isotropic HF superconductor-it may indeed argue for Cooper pairing via quadrupolar fluctuations.  相似文献   

15.
The normal state properties of the recently discovered ferropnictide superconductors might hold the key to understanding their exotic superconductivity. Using point-contact spectroscopy we show that Andreev reflection between an epitaxial thin film of Ba(Fe(0.92)Co(0.08))?As? and a silver tip can be seen in the normal state of the film up to temperature T~1.3T(c), where T(c) is the critical temperature of the superconductor. Andreev reflection far above T(c) can be understood only when superconducting pairs arising from strong fluctuation of the phase of the complex superconducting order parameter exist in the normal state. Our results provide spectroscopic evidence of phase-incoherent superconducting pairs in the normal state of the ferropnictide superconductors.  相似文献   

16.
Specific heat has been investigated in a layered nitride superconductor, Li(0.12)ZrNCl, with T(c)=12.7 K. The obtained data have shown a marked dichotomy: The specific heat jump at T(c) (DeltaC/gamma(n)T(c)=1.8) and the superconducting gap ratio (2Delta/k(B)T(c)=4.6-5.2) have indicated an intermediate to a strong coupling of electrons, while the upper limit of the electron-phonon coupling constant lambda has directly been estimated to be 0.22, which belongs to a weak coupling regime. Furthermore, the rapid increase of gamma as a function of magnetic field suggests that the present material has an anisotropic s wave gap.  相似文献   

17.
We report on a new iron selenide superconductor with a T(c) onset of 45?K and the nominal composition Li(x)(C(5)H(5)N)(y)Fe(2-z)Se(2), synthesized via intercalation of dissolved alkaline metal in anhydrous pyridine at room temperature. This superconductor exhibits a broad transition, reaching zero resistance at 10?K. Magnetization measurements reveal a superconducting shielding fraction of approximately 30%. Analogous phases intercalated with Na, K and Rb were also synthesized and characterized. The superconducting transition temperature of Li(x)(C(5)H(5)N)(y)Fe(2-z)Se(2) is clearly enhanced in comparison to those of the known superconductors FeSe(0.98) (T(c)?~?8?K) and A(x)Fe(2-y)Se(2) (T(c)?~?27-32?K) and is in close agreement with critical temperatures recently reported for Li(x)(NH(3))(y)Fe(2-z)Se(2). Post-annealing of intercalated material (Li(x)(C(5)H(5)N)(y)Fe(2-z)Se(2)) at elevated temperatures drastically enlarges the c-parameter of the unit cell (~44%) and increases the superconducting shielding fraction to nearly 100%. Our findings indicate a new synthesis route leading to possibly even higher critical temperatures for materials in this class: by intercalation of organic compounds between Fe-Se layers.  相似文献   

18.

Among heavy-fermion (HF) superconductors, CeCoIn 5 exhibits a record high value of T c =2.3 K at ambient pressure [1]. CeCoIn 5 belongs to a new class of HF-superconductors that crystallize in the tetragonal HoCoGa 5 -structure. This structure can be regarded as alternating layers of CeIn 3 and CoIn 2 . Bulk CeIn 3 undergoes a transition from an antiferromagnetic (AFM) state at ambient pressure ( T N =10.2 K) to a superconducting state with very low T C =0.15 K at a critical pressure p c =2.8 GPa [2] at which long range magnetic order vanishes. It is, therefore, regarded as a possible candidate for magnetically mediated superconductivity (SC). We report on measurements of the heat capacity of CeCoIn 5 at hydrostatic pressures p h 1.5 GPa. While T c increases with increasing pressure, the effective mass of the quasi-particles m eff decreases, as indicated by the ratio C / T | T c . As a working hypothesis based on theories of a nearly antiferromagnetic Fermi-liquid (NAFFL), this may be interpreted as the stabilization of the superconducting state by an increase of the characteristic spin fluctuation temperature T_{SF} (T_{SF}\propto k_F^2/m_{\rm eff}).  相似文献   

19.
The superconducting properties of the recently discovered PuMGa5 (M=Co,Rh) superconductors, including the power law behavior of the specific heat, the evolution of the superconducting transition T(c) temperature with pressure, and the linear relation between T(c) and ratio of tetragonal lattice parameters c/a, are compared to those of the heavy fermion CeMIn5 (M=Co,Rh,Ir) unconventional superconductors. The striking similarity of the properties between the two families of superconductors suggests a common physics and a common (magnetically mediated) mechanism of superconductivity.  相似文献   

20.
We investigated the orbital and antiferromagnetic ordering behaviors of the half-doped bilayer manganite La(2-2x)Sr(1+2x)Mn2O7 (x ? 0.5) by using Mn L(2,3)-edge resonant soft x-ray scattering. Resonant soft x-ray scattering reveals the CE-type orbital order below T(oo) ? 220 K, which shows partial melting behavior below T(m) ? 165 K. We also found coexistence CE- and A-type antiferromagnetic orders. Both orders involve the CE-type orbital order with nearly the same orbital character and are coupled with each other. These results manifest that the ground state with the CE-type antiferromagnetic order is easily susceptible to destabilization into the A-type one even with a small fluctuation of the doping level, as suggested by the extremely narrow magnetic phase boundaries at x ? 0.5±0.005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号