首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
The luminescence properties of self-assembled InAs quantum dots (QDs) on GaAs (1 0 0) substrates grown by molecular beam epitaxy have been investigated using temperature-dependent photoluminescence (PL) and time-resolved PL (TRPL). InAs QDs were grown using an In-interruption growth technique, in which the indium flux was periodically interrupted. InAs QDs grown using In-interruption showed reduced PL linewidth, redshifted PL emission energy, increased energy level spacing between the ground state and the first excited state, and reduced decay time, indicating an improvement in the size distribution and size/shape of QDs.  相似文献   

2.
Using time-resolved photoluminescence (PL) spectroscopy, we establish the presence of the Förster energy transfer mechanism between two arrays of epitaxial CdSe/ZnSe quantum dots (QDs) of different sizes. The mechanism operates through dipole–dipole interaction between ground excitonic states of the smaller QDs and excited states of the larger QDs. The dependence of energy transfer efficiency on the width of barrier separating the QD insets is shown to be in line with the Förster mechanism. The temperature dependence of the PL decay times and PL intensity suggests the involvement of dark excitons in the energy transfer process.  相似文献   

3.
Carrier dynamics in aligned InAs/GaAs quantum dots (QDs) grown on cross-hatched patterns induced by metastable InxGa1−xAs layers have been studied by time-resolved photoluminescence. The low-temperature carrier lifetimes were found to be of the order of 100–200 ps and determined by carrier trapping and nonradiative recombination. Comparisons with control “nonaligned” InAs QDs show remarkable differences in dependence of peak PL intensities on excitation power, and in PL decay times dependences on both temperature and excitation intensities. Possible origin of traps, which determine the carrier lifetimes, is discussed.  相似文献   

4.
Room temperature 1.3 μm emitting InAs quantum dots (QDs) covered by an In0.4Ga0.6As/GaAs strain reducing layer (SRL) have been fabricated by solid source molecular beam epitaxy (SSMBE) using the Stranski–Krastanov growth mode. The sample used has been investigated by temperature and excitation power dependent photoluminescence (PL), photoluminescence excitation (PLE), and time resolved photoluminescence (TRPL) experiments. Three emission peaks are apparent in the low temperature PL spectrum. We have found, through PLE measurement, a single quantum dot ground state and the corresponding first excited state with relatively large energy spacing. This attribute has been confirmed by TRPL measurements which allow comparison of the dynamics of the ground state with that of the excited states. Optical transitions related to the InGaAs quantum well have been also identified. Over the whole temperature range, the PL intensity is found to exhibit an anomalous increase with increasing temperatures up to 100 K and then followed by a drop by three orders of magnitude. Carrier’s activation energy out of the quantum dots is found to be close to the energy difference between each two subsequent transition energies. PACS 68.65.Ac; 68.65.Hb; 78.67.Hc  相似文献   

5.
Investigations of EuGa2S4 have been done on the photoluminescence (PL) related to the transition between 4f65d and 4f7 configuration of the Eu2+ ion and its excitation (PLE) spectra, Raman scattering and infrared absorption. The energies of phonons coupled to the ground and the excited states of the transition are analyzed to be 34 and 19 meV from the shapes of the PL and PLE bands, respectively. The former corresponds to the energy of the Raman line showing the highest intensity. The latter is close to the value obtained from analysis of the temperature dependence of the half width of the PL band. These correspondences indicate that the relevant emission of EuGa2S4 surely has phonon-terminated character.  相似文献   

6.
In this report we have investigated the temperature dependence of photoluminescence (PL) from self-assembled InAs quantum dots (QDs) covered by an InAlAs/InGaAs combination layer. The ground state experiences an abnormal variation of PL linewidth from 15 K up to room temperature. Meanwhile, the PL integrated intensity ratio of the first excited state to the ground state for InAs QDs unexpectedly decreases with increasing temperature, which we attribute to the phonon bottleneck effect. We believe that these experimental results are closely related to the partially coupled quantum dots system and the large energy separation between the ground and the first excited states.  相似文献   

7.
We study the variations of optical properties of self-assembled In0.5Ga0.5As single quantum dots (QDs) in the spatial and time domains by combining a near-field scanning optical microscope with an ultrafast pulsed laser. Through the examinations of several tens of QDs, we find that the variations of photoluminescence (PL) intensity strongly depend on the condition of the initial carrier creation. The differences in quantum efficiency and those in the carrier flow rate into QDs cause the large distribution of PL intensity when the carriers are excited in the barrier layers. From the results of time-resolved PL decay measurements, we find that there are two types of QDs exhibiting quite different PL decay profiles.  相似文献   

8.
Photoreflectance (PR) measurements are performed as a function of temperature on self-organized InAs/InP(0 0 1) quantum sticks (QSs) grown by solid-source molecular beam epitaxy. With a very weak excitation power, three PR transition energies are arising and associated with the ground state and two excited states, respectively, in good agreement with both photoluminescence (PL) and PL excitation measurements. The temperature dependence of the PR transition energies is in good agreement with the Bose-Einstein behavior.From PL analysis of these InAs/InP QSs, the ground state was assumed to be partially filled because of the residual n-type doping of the InP barrier layers. The PR spectra analysis allows us to further confirm this assumption, considering mainly the relative PR intensity of the different transitions, as well as the Franz Keldysh oscillations (FKO) above the InP bandgap.  相似文献   

9.
We have investigated the temperature-dependent photoluminescence (PL) spectra in Ga1−xMnxN layers (where x≈0.1–0.8%) grown on sapphire (0 0 0 1) substrates using the plasma-enhanced molecular beam epitaxy technique. All the layers doped with manganese exhibited n-type conductivity with Curie temperature over 350 K. The efficient PL are peaked in the red (1.86 eV), yellow (2.34 eV), and blue (3.29 eV) spectral range. It was found that the blue band at 3.29 eV is mostly associated with the formation complexes between donors (e.g., N vacancy) and Mn acceptors, which results in forming donor levels at 0.23 eV below the conduction band edge. The yellow band is attributed to intrinsic gallium defects. The broad band at 1.86 eV is attributed to inner 5D state transition (T2 to E) of Mn ions.  相似文献   

10.
The results of a study of time-resolved photoluminescence (PL) and energy transfer in both pure and doped with Ce3+ ions SrAlF5 (SAF) single crystals are presented. The time-resolved and steady-state PL spectra in the energy range of 1.5–6.0 eV, the PL excitation spectra and the reflectivity in the energy range of 3.7–21 eV, as well as the PL decay kinetics were measured at 8.8 and 295 K. The lattice defects were revealed in the low temperature PL spectra (emission bands at 2.9 and 4.5 eV) in the undoped SAF crystals. The luminescence spectra of the doped Ce3+:SAF crystals demonstrate a new selective emission bands in the range of 3.7–4.5 eV with the exponential decay kinetics (τ ≈ 60 ns at X-ray excitation). These bands correspond to the d-f transitions in Ce3+ ions, which occupy nonequivalent sites in the crystal lattice.  相似文献   

11.
Systematic studies of Ge quantum dots (QDs) grown on strained Si0.3Ge0.7 layer have been carried out by photoluminescence (PL) and deep level transient spectroscopy (DLTS). In PL measurements, two peaks around 0.7 eV are distinguished, which are assigned to two types of QDs observed by atomic force microscopy (AFM). Large blueshifts of the PL peaks from small QDs with the increase of excitation power are observed and attributed to the band bending effects typical for type-II band alignment. From DLTS measurements, the energy levels of holes in both types of QDs are derived, which shift with the change of the number of holes in QDs due to their charge energy. By comparing results from PL and DLTS measurements, further understanding of band alignment with the increase of the number of excitons in QDs is deduced.  相似文献   

12.
This paper reports on a study of the dynamics of electronic excitations in KBe2BO3F2 (KBBF) crystals by low-temperature luminescent vacuum ultraviolet spectroscopy with nanosecond time resolution under photoexcitation by synchrotron radiation. The first data have been obtained on the kinetics of photoluminescence (PL) decay, time-resolved PL spectra, time-resolved PL excitation spectra, and reflection spectra at 7 K; the estimation has been performed for the band gap E g = 10.6−11.0 eV; the predominantly excitonic mechanism for PL excitation at 3.88 eV has been identified; and defect luminescence bands at 3.03 and 4.30 eV have been revealed. The channels of generation and decay of electronic excitations in KBBF crystals have been discussed.  相似文献   

13.
The effects of the top barrier and the dot density on photoluminescence (PL) of the InAs quantum dots (QDs) sandwiched by the graded InxGa1−xAs barriers grown by metal-organic vapor phase epitaxy (MOVPE) have been studied. Two emission peaks corresponding to the ground state and the 1st excited state transitions of the QD structures have been observed, which matches well to the theoretical calculation. The PL emission linewidth and intensity of the InAs QDs structure are improved by reducing the Indium/Gallium composition variation of the graded InxGa1−xAs top barrier layer of the structure. The QDs’ ground states filling excitation power depends on the crystal quality of the InGaAs barrier layer and the QD density. The extracted thermal activation energy for the QDs’ PL emission is sensitive to the QD size.  相似文献   

14.
An ensemble of InAs quantum dots with ground state transition energies centered at 1.216 eV and density 1011dots/cm2 has been studied by time-resolved photoluminescence (PL). The wavelength of the 100-fs excitation pulse was tuned through the ground (excited) state transitions, resulting in resonant (optical phonon sideband) PL. The decay of the PL was time resolved with a streak camera in the interval 1.5–3 ns to avoid scattered laser light. The intensity of the PL was recorded with its polarization both parallel with and perpendicular to the excitation polarization (along one of the crystal’s cleave axes); the ratio is 2.22 at low temperatures and low excitation. A phenomenological rate equation analysis is made, separating the excitations into two classes, one polarized along the excitation polarization and the other unpolarized (either that way immediately after the excitation pulse or scattered from the first class). Excellent fits to the data lead to the conclusion that both classes decay radiatively with a lifetime of 1 ns, and a transfer from the polarized to the unpolarized species takes place with a distribution time of 12 ns at low temperatures and low excitation, dropping rapidly toward zero for temperatures above 30 K and for intense excitation levels. The polarization of a coherently excited ground state exciton should dephase with a rate equal to the sum of the radiative rate plus the inverse of this distribution time.  相似文献   

15.
Self-assembled InAs/GaAs (001) quantum dots (QDs) were grown by molecular beam epitaxy using ultra low-growth rate. A typical dot diameter of around 28 ± 2 nm and a typical height of 5 ± 1 nm are observed based on atomic force microscopy image. The photoluminescence (PL) spectra, their power and temperature dependences have been studied for ground (GS) and three excited states (1–3ES) in InAs QDs. By changing the excitation power density, we can significantly influence the distribution of excitons within the QD ensemble. The PL peak energy positions of GS and ES emissions bands depend on an excitation light power. With increasing excitation power, the GS emission energy was red-shifted, while the 1–3ES emission energies were blue-shifted. It is found that the full width at half maximum of the PL spectra has unusual relationship with increasing temperature from 9 to 300 K. The temperature dependence of QD PL spectra shown the existence of two stages of PL thermal quenching and two distinct activation energies corresponding to the temperature ranges I (9–100 K) and II (100–300 K).  相似文献   

16.
Strong photoluminescence (PL) covering the green-violet band was measured at room temperature in an as-deposited amorphous Si-in-SiNx film, which was prepared by plasma-enhanced chemical vapor deposition on cold (below 60 °C) Si(1 0 0) wafer. With an increase in photon energy of excitation, the PL shifts its peak position from 510 to 416 nm at yet-comparable intensities, thus allowing an energy-selected excitation in practical application. Also, a time-resolved analysis was performed for the emissions at various wavelengths, which showed a decay time shorter than 1.0 ns. These results indicate that the nanostructured Si-in-SiNx can be a promising candidate material for the fabrication of silicon-based optical interconnections and switches.  相似文献   

17.
A pulsed anodic etching method has been utilized for nanostructuring of p-type GaAs (1 0 0) surface, using HCl-based solution as electrolyte. The resulting porous GaAs layer is characterized by atomic force microscopy (AFM), room temperature photoluminescence (PL), Raman spectroscopy and optical reflectance measurements. AFM imaging reveals that the porous GaAs layer is consisted of a pillar-like of few nm in width distributed between more-reduced size nanostructures. In addition to the “infrared” PL band of un-etched GaAs, a strong “green” PL band is observed in the etched sample. The broad visible PL band of a high-energy (3.82 eV) excitation is found to compose of two PL band attributed to excitons confinement in two different sizes distribution of GaAs nanocrystals. The quantum confinement effects in GaAs nanocrystallites is also evidenced from Raman spectroscopy through the pronounced appearance of the transverse optical (TO) phonon line in the spectra of the porous sample. Porosity-induced a significant reduction of the specular reflection, in the spectral range (400–800 nm), is also demonstrated.  相似文献   

18.
The pump fluence dependent photoluminescence (PL) spectra of SnO2 nanowires were investigated, which were synthesized with a high-temperature chemical reduction method. The integrated intensity of the narrower peak at 3.2 eV experiences a strong superlinear dependence on the pump fluence, and the narrowest width of the sharp peak is only 19 meV. Moreover, under high excitation fluence, an ultrafast decay time (less than 20 ps) appears in the time-resolved PL spectra. The emission of these SnO2 nanowires shows strong apparent stimulated emission behaviors although the SnO2 is a dipole forbidden direct gap semiconductor. The stimulated emission should relate to the localized islands on the surface of nanowire, which was observed through the high resolution transmission electron microscopy (HRTEM) image. The giant-oscillator-strength effect of bound exciton generated from the localized islands was considered to induce the stimulated emission of SnO2 nanowires.  相似文献   

19.
The solvothermal method has been employed to synthesize cuprous oxide (Cu2O) nanowires using a precursor of cupric acetate monohydrate (CuAc2) and ethylene glycol (EG) as the solvent. By optimizing the reaction temperature and reaction time, we have prepared Cu2O nanowires with a diameter of approximately 7 nm and a length of several nanometers. The UV-visible absorption spectrum of the nanowires shows obvious blueshift compared to the bulk Cu2O, which arises from the quantum confinement effect of the excitonic transition expected for Cu2O nanowires. Here we also report the role of different excitation energies on the photoluminescence (PL) properties of the Cu2O nanowires by steady-state and time-resolved PL spectroscopy. The decay times vary from nanoseconds to picoseconds. Decay kinetics indicates that the average lifetime 〈τ〉 of the nanowires increases with increasing excitation energy. The current-voltage (I-V) curves of the nanowires give the photocurrent density 16 times larger than the dark current density.  相似文献   

20.
We present time-resolved photoluminescence (PL) results of a series of GaP1-xNx samples with x up to 0.01. The temperature dependence, the concentration dependence as well as the temporal behavior indicate that the PL is dominated by excitation transfer processes between the extended band states and localized N-related states (such as the isolated N-impurity, various N-pair states and higher N-clusters) as well as by excitation transfer between the various localized N-related states themselves. The excitation transfer processes in conjunction with the concentration-dependent statistics of the various N-related states alone are sufficient to explain the observed red-shift of the luminescence of GaP1-xNx with increasing x as well as the spectral dependence of the PL decay times. However, this implies that the PL data alone do not give any conclusive evidence that a hard transformation from an indirect to a direct-gap semiconductor takes place in Ga(N,P) with increasing N up to 2% as often stated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号