首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 409 毫秒
1.
We present an interior-point branch-and-cut algorithm for structured integer programs based on Benders decomposition and the analytic center cutting plane method (ACCPM). We show that the ACCPM based Benders cuts are both pareto-optimal and valid for any node of the branch-and-bound tree. The valid cuts are added to a pool of cuts that is used to warm-start the solution of the nodes after branching. The algorithm is tested on two classes of problems: the capacitated facility location problem and the multicommodity capacitated fixed charge network design problem. For the capacitated facility location problem, the proposed approach was on average 2.5 times faster than Benders-branch-and-cut and 11 times faster than classical Benders decomposition. For the multicommodity capacitated fixed charge network design problem, the proposed approach was 4 times faster than Benders-branch-and-cut while classical Benders decomposition failed to solve the majority of the tested instances.  相似文献   

2.
In this paper, we propose a capacity scaling heuristic using a column generation and row generation technique to address the multicommodity capacitated network design problem. The capacity scaling heuristic is an approximate iterative solution method for capacitated network problems based on changing arc capacities, which depend on flow volumes on the arcs. By combining a column and row generation technique and a strong formulation including forcing constraints, this heuristic derives high quality results, and computational effort can be reduced considerably. The capacity scaling heuristic offers one of the best current results among approximate solution algorithms designed to address the multicommodity capacitated network design problem.  相似文献   

3.
A partitioning algorithm for solving the general minimum cost multicommodity flow problem for directed graphs is presented in the framework of a network flow method and the dual simplex method. A working basis which is considerably smaller than the number of capacitated arcs in the given network is employed and a set of simple secondary constraints is periodically examined. Some computational aspects and preliminary experimental results are discussed.  相似文献   

4.
Yiyo Kuo 《TOP》2014,22(2):600-613
Transit network design is a very important problem. In particular, it has a great influence on passenger satisfaction with the whole transit network system. The present research proposes a simulated annealing (SA) method for optimizing a transit network design. In the algorithm, the strategy to search for neighborhood solutions provides the chance to find the best hybrid of line-type and circular-type routes. The proposed SA method is also compared with other methods. The results show that the proposed SA model is a good alternative for transit network design, particularly as it provides the scope to design hybrids of line-type and circular-type routes.  相似文献   

5.
Scatter Search for Network Design Problem   总被引:1,自引:0,他引:1  
A fixed charge capacitated multicommodity network design problem on undirected networks is addressed. At the present time, there exists no algorithm that can solve large instances, common in several applications, in a reasonable period of time. This paper presents an efficient procedure using a scatter search framework. Computational experiments on a large set of randomly generated problems show that this procedure is capable of finding good solutions to large-scale problems within a reasonable amount of time.  相似文献   

6.
The network loading problem (NLP) is a specialized capacitated network design problem in which prescribed point-to-point demand between various pairs of nodes of a network must be met by installing (loading) a capacitated facility. We can load any number of units of the facility on each of the arcs at a specified arc dependent cost. The problem is to determine the number of facilities to be loaded on the arcs that will satisfy the given demand at minimum cost.This paper studies two core subproblems of the NLP. The first problem, motivated by a Lagrangian relaxation approach for solving the problem, considers a multiple commodity, single arc capacitated network design problem. The second problem is a three node network; this specialized network arises in larger networks if we aggregate nodes. In both cases, we develop families of facets and completely characterize the convex hull of feasible solutions to the integer programming formulation of the problems. These results in turn strengthen the formulation of the NLP.Research of this author was supported in part by a Faculty Grant from the Katz Graduate School of Business, University of Pittsburgh.  相似文献   

7.
We compare some optimal methods addressed to a problem of local access network design. We see this problem arising in telecommunication as a flow extension of the Steiner problem in directed graphs, thus including as particular cases some alternative approaches based on the spanning tree problem. We work with two equivalent flow formulations for the problem, the first referring to a single commodity and the second being a multicommodity flow model. The objective in both cases is the cost minimization of the sum of the fixed (structural) and variable (operational) costs of all the arcs composing an arborescence that links the origin node (switching center) to every demand node. The weak single commodity flow formulation is solved by a branch-and-bound strategy that applies Lagrangian relaxation for computing the bounds. The strong multicommodity flow model is solved by a branch-and-cut algorithm and by Benders decomposition. The use of a linear programming solver to address both the single commodity and the multicommodity models has also been investigated. Our experience suggests that a certain number of these modeling and solution strategies can be applied to the frequently occurring problems where basic optimal solutions to the linear program are automatically integral, so it also solves the combinatorial optimization problem right away. On the other hand, our main conclusion is that a well tailored Benders partitioning approach emerges as a robust method to cope with that fabricated cases where the linear programming relaxation exhibits a gap between the continuous and the integral optimal values.  相似文献   

8.
Recently proved successful for variants of the vehicle routing problem (VRP) involving time windows, genetic algorithms have not yet shown to compete or challenge current best search techniques in solving the classical capacitated VRP. A new hybrid genetic algorithm to address the capacitated VRP is proposed. The basic scheme consists in concurrently evolving two populations of solutions to minimize total travelled distance using genetic operators combining variations of key concepts inspired from routing techniques and search strategies used for a time variant of the problem to further provide search guidance while balancing intensification and diversification. Results from a computational experiment over common benchmark problems report the proposed approach to be very competitive with the best-known methods.  相似文献   

9.
A GRASP embedded Scatter Search is developed for the multicommodity capacitated network design problem. Difficulty for this problem arises from the fact that selection of the optimal network design is an NP-complete combinatorial problem. There exist no polynomial exact algorithms which can solve this problem in a reasonable period of time for realistically sized instances. In such cases, heuristic procedures are commonly used. Two strategies were designed for GRASP: a traditional approach and a memory based technique. As for Scatter Search, 5 different strategies were used to update the reference set. Computational results on a large set of randomly generated instances show the convenience of the proposed procedures.  相似文献   

10.
We analyze a business model for e-supermarkets to enable multi-product sourcing capacity through co-opetition (collaborative competition). The logistics aspect of our approach is to design and execute a network system where “premium” goods are acquired from vendors at multiple locations in the supply network and delivered to customers. Our specific goals are to: (i) investigate the role of premium product offerings in creating critical mass and profit; (ii) develop a model for the multiple-pickup single-delivery vehicle routing problem in the presence of multiple vendors; and (iii) propose a hybrid solution approach. To solve the problem introduced in this paper, we develop a hybrid metaheuristic approach that uses a Genetic Algorithm for vendor selection and allocation, and a modified savings algorithm for the capacitated VRP with multiple pickup, single delivery and time windows (CVRPMPDTW). The proposed Genetic Algorithm guides the search for optimal vendor pickup location decisions, and for each generated solution in the genetic population, a corresponding CVRPMPDTW is solved using the savings algorithm. We validate our solution approach against published VRPTW solutions and also test our algorithm with Solomon instances modified for CVRPMPDTW.  相似文献   

11.
In this paper we consider the problem of constructing a network over which a number of commodities are to be transported. Fixed costs are associated to the construction of network arcs and variable costs are associated to routing of commodities. In addition, one capacity constraint is related to each arc. The problem is to determine a network design that minimizes the total cost; i.e., it balances the construction and operating costs. A dual ascent procedure for finding improved lower bounds and near-optimal solutions for the fixed-charge capacitated network design problem is proposed. The method is shown to generate tighter lower bounds than the linear programming relaxation of the problem.  相似文献   

12.
In this study we deal with network routing decisions and approximate performance evaluation approaches for generalized open queuing networks (OQN), in which commodities enter the network, receive service at one or more arcs and then leave the network. Exact performance evaluation has been applied for the analysis of Jackson OQN, where the arrival and service processes of the commodities are assumed to be Poisson. However, the Poisson processes’ hypotheses are not a plausible or acceptable assumption for the analysis of generalized OQN, as their arrival and service processes can be much less variable than Poisson processes, resulting in overestimated system performance measures and inappropriate flow routing solutions. In this paper we merge network routing algorithms and network decomposition methods to solve multicommodity flow problems in generalized OQN. Our focus is on steady-state performance measures as average delays and waiting times in queue. The main contributions are twofold: (i) to highlight that solving the corresponding multicommodity flow problem by representing the generalized OQN as a Jackson OQN may be a poor approximation and may lead to inaccurate estimates of the system performance measures, and (ii) to present a multicommodity flow algorithm based on a routing step and on an approximate decomposition step, which leads to much more accurate solutions. Computational results are presented in order to show the effectiveness of the proposed approach.  相似文献   

13.
In this paper, we propose a path relinking procedure for the fixed-charge capacitated multicommodity network design problem. Cycle-based neighbourhoods are used both to move along paths between elite solutions and to generate the elite candidate set by a tabu-like local search procedure. Several variants of the method are implemented and compared. Extensive computational experiments indicate that the path relinking procedure offers excellent results. It systematically outperforms the cycle-based tabu search method in both solution quality and computational effort and offers the best current meta-heuristic for this difficult class of problems.  相似文献   

14.
Cooperative Parallel Tabu Search for Capacitated Network Design   总被引:1,自引:0,他引:1  
We present a cooperative parallel tabu search method for the fixed charge, capacitated, multicommodity network design problem. Several communication strategies are analyzed and compared. The resulting parallel procedure displays excellent performances in terms of solution quality and solution times. The experiments show that parallel implementations find better solutions than sequential ones. They also show that, when properly designed and implemented, cooperative search outperforms independent search strategies, at least on the class of problems of interest here.  相似文献   

15.
In this paper, a tabu search heuristic is combined with slope scaling to solve a discrete depot location problem, known as the multicommodity location problem with balancing requirements. Although the uncapacitated version of this problem has already been addressed in the literature, this is not the case for the more challenging capacitated version, where each depot has a fixed and finite capacity. The slope scaling approach is used during the initialization phase to provide the tabu search with good starting solutions. Numerical results are reported on various types of large-scale randomly generated instances. The quality of the heuristic is assessed by comparing the solutions obtained with those of a commercial mixed-integer programming code.  相似文献   

16.
It is an important issue to design some performance indexes in order to measure the performance for a telecommunication network. Network analysis is an available approach to solve the performance problem for a real-life system. We construct a two-commodity stochastic-flow network with unreliable nodes (arcs and nodes all have several possible capacities and may fail) to model the telecommunication network. In which, all types of commodity are transmitted through the same network simultaneously and compete the capacities. This paper defines the system capacity as a 2-tuple vector, and then proposes a performance index, the probability that the upper bound of the system capacity equals a demand vector subject to the budget constraint. An upper boundary point is a vector representing the capacities of arcs and nodes, and is the maximal vector exactly meeting the demand vector. A simple algorithm based on minimal cuts (or named MC-based algorithm) is then presented to generate all upper boundary points in order to evaluate the performance index. The storage and computational time complexity of this algorithm are also analyzed. The performance evaluation for the multicommodity case can be extended easily.  相似文献   

17.
This paper describes a slope scaling heuristic for solving the multicomodity capacitated fixed-charge network design problem. The heuristic integrates a Lagrangean perturbation scheme and intensification/diversification mechanisms based on a long-term memory. Although the impact of the Lagrangean perturbation mechanism on the performance of the method is minor, the intensification/diversification components of the algorithm are essential for the approach to achieve good performance. The computational results on a large set of randomly generated instances from the literature show that the proposed method is competitive with the best known heuristic approaches for the problem. Moreover, it generally provides better solutions on larger, more difficult, instances.  相似文献   

18.
This paper proposes an exact algorithm to solve the robust design problem in a capacitated flow network in which each edge has several possible capacities. A capacitated flow network is popular in our daily life. For example, the computer network, the power transmission network, or even the supply chain network are capacitated flow networks. In practice, such network may suffer failure, partial failure or maintenance. Therefore, each edge in the network should be assigned sufficient capacity to keep the network functioning normally. The robust design problem (RDP) in a capacitated flow network is to search for the minimum capacity assignment of each edge such that the network still survived even under the edge’s failure. However, how to optimally assign the capacity to each edge is not an easy task. Although this kind of problem was known of NP-hard, this paper proposes an efficient exact algorithm to search for the optimal solutions for such a network and illustrates the efficiency of the proposed algorithm by numerical examples.  相似文献   

19.
The paper deals with nonlinear multicommodity flow problems with convex costs. A decomposition method is proposed to solve them. The approach applies a potential reduction algorithm to solve the master problem approximately and a column generation technique to define a sequence of primal linear programming problems. Each subproblem consists of finding a minimum cost flow between an origin and a destination node in an uncapacited network. It is thus formulated as a shortest path problem and solved with Dijkstra’s d-heap algorithm. An implementation is described that takes full advantage of the supersparsity of the network in the linear algebra operations. Computational results show the efficiency of this approach on well-known nondifferentiable problems and also large scale randomly generated problems (up to 1000 arcs and 5000 commodities). This research has been supported by the Fonds National de la Recherche Scientifique Suisse, grant #12-34002.92, NSERC-Canada and FCAR-Quebec. This research was supported by an Obermann fellowship at the Center for Advanced Studies at the University of Iowa.  相似文献   

20.
给出一个局部带优先权的最大多物资网络流问题(MMFP-LPRI),证明它的解存在,并给出其η-松弛解的定义.通过做辅助网络,并运用程丛电等根据Korte和Vygen于2000年在Young,Garg和K(o|¨)nemann等工作的基础上给出的求最大多种物资网络流问题的ε-近似解的多项式方案设计的一个算法作为子程序进行二分收索建立了一个求所给问题的η-松弛解的拟多项式算法.最后,进行算法分析,证明了所设计的算法的输出结果确实是MMFP-LPRT的一个η-松弛解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号