首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of Er3+/Yb3+-co-doped 60Bi2O3-(40−x) B2O3 -xGa2O3 (BBGA x=0, 4, 8, 12, 16 mol%) glasses have been prepared. The absorption spectra, emission spectra, fluorescence lifetime of Er3+:4I13/2 level and thermal stability were measured and investigated. Three Judd-Ofelt intensity parameters Ωt (t=2,4,6) (Ω2=(4.67-5.93)×10−20 cm2, Ω4=(1.50-1.81)×10−20 cm2, Ω6=(0.92-1.17)×10−20 cm2) of Er3+ ions were calculated by Judd-Ofelt theory. It is found that the Ω6 first increases with the increase of Ga2O3 content from 0 to 8 mol% and then decreases, which is mainly affected by the number of non-bridging oxygen ions of the glass network. The high peak of stimulated emission cross-section () of Er3+: 4I13/24I15/2 transition were obtained according to McCumber theory and broad full width at half maximum (FWHM=69-76 nm) of the 4I13/24I15/2 transition of Er3+ ions were measured. The results indicate that these new BBGA glasses can be used as a candidate host material for potential broadband optical amplifiers.  相似文献   

2.
This paper reports on the absorption, visible and near-infrared luminescence properties of Nd3+, Er3+, Er3+/2Yb3+, and Tm3+ doped oxyfluoride aluminosilicate glasses. From the measured absorption spectra, Judd-Ofelt (J-O) intensity parameters (Ω2, Ω4 and Ω6) have been calculated for all the studied ions. Decay lifetime curves were measured for the visible emissions of Er3+ (558 nm, green), and Tm3+ (650 and 795 nm), respectively. The near infrared emission spectrum of Nd3+ doped glass has shown full width at half maximum (FWHM) around 45 nm (for the 4F3/24I9/2 transition), 45 nm (for the 4F3/24I11/2 transition), and 60 nm (for the 4F3/24I13/2 transition), respectively, with 800 nm laser diode (LD) excitation. For Er3+, and Er3+/2Yb3+ co-doped glasses, the characteristic near infrared emission bands were spectrally centered at 1532 and 1544 nm, respectively, with 980 nm laser diode excitation, exhibiting full width at half maximum around 50 and 90 nm for the erbium 4I13/24I15/2 transition. The measured maximum decay times of 4I13/24I15/2 transition (at wavelength 1532 and 1544 nm) are about 5.280 and 5.719 ms for 1Er3+ and 1Er3+/2Yb3+ (mol%) co-doped glasses, respectively. The maximum stimulated emission cross sections for 4I13/24I15/2 transition of Er3+ and Er3+/Yb3+ are 10.81×10−21 and 5.723×10-21 cm2. These glasses with better thermal stability, bright visible emissions and broad near-infrared emissions should have potential applications in broadly tunable laser sources, interesting optical luminescent materials and broadband optical amplification at low-loss telecommunication windows.  相似文献   

3.
The optimization of erbium-doped Ta2O5 thin film waveguides deposited by magnetron sputtering onto thermally oxidized silicon wafer is described. Optical constants of the film were determined by ellipsometry. For the slab waveguides, background losses below 0.4 dB/cm at 633 nm have been obtained before post-annealing. The samples, when pumped at 980 nm yielded a broad photoluminescence spectrum (FWHM∼50 nm) centred at 1534 nm, corresponding to 4I13/2-4I15/2 transition of Er3+ ion. The samples were annealed up to 600 °C and both photoluminescence power and fluorescence lifetime increase with post-annealing temperature and a fluorescence lifetime of 2.4 ms was achieved, yielding promising results for compact waveguide amplifiers.  相似文献   

4.
Using Czochralski (CZ) pulling method, an Er3+/Yb3+-codoped NaY(WO4)2 crystal was prepared. Absorption spectra, emission spectra and excitation spectra of this crystal were measured at room temperature. Some optical parameters, such as intensity parameters, spontaneous emission probabilities and lifetimes, were calculated from absorption spectra with Judd-Ofelt (J-O) theory. Upconversion luminescence excited by a 970 nm diode laser was studied. In this crystal, green upconversion luminescence is particularly intensive. Energy transfer mechanisms that play an important role in upconversion processes were analyzed. Two cross-relaxation processes: 4G11/2 + 4I9/2 → 2H11/2 (or 4S3/2) + 2H11/2 (or 4S3/2), and 4G11/2 + 4I15/2 → 2H11/2 (or 4S3/2) + 2I13/2, which contribute to the intensive green luminescence under 378 nm excitation, were put forward. Background energy transfer 4G11/2(Er3+) + 2F7/2(Yb3+) → 4F9/2(Er3+) + 2F5/2(Yb3+) was also demonstrated.  相似文献   

5.
Erbium-doped MoO3−Bi2O3−TeO2 (MBT) glasses suitable for broadband optical amplifier applications have been fabricated and characterized optically. The maximum phonon band of undoped glasses is at 915 cm−1, and the emission from the Er3+: 4I13/2 → 4I15/2 transition locates around 1.53 μm with a full width at half maximum (FWHM) of ∼80 nm. The lifetime and quantum efficiency of the 4I13/2 level are 2.13 ms and ∼90%, respectively. Under the same measurement condition, the upconversion emission intensities at 550 nm in Er3+-doped MBT glasses is about 30 times weaker than that in Er3+-doped Na2O−ZnO−TeO2 (NZT) glasses.  相似文献   

6.
The green up-conversion fluorescence of Er3+ ions doped in an nonlinear optical ZnO-Nb2O5-TeO2 glass was observed by using 800 nm excitation from a regenerative femtosecond (fs) Ti:Sapphire laser. The detailed analysis on two fluorescence lines at 526 nm (2H11/2-4I15/2) and 548 nm (4S3/2-4I15/2) revealed the fs laser heating of the multi-component TeO2-based glass, which was possibly due to its nonlinear absorption of the host glass via the imaginary part of the third-order optical susceptibility (χ(3)). The result was compared with that of a Er3+-doped aluminosilicate glass under the same irradiation condition. When the fs laser was irradiated to the multicomponent TeO2-based glass in the power density of 150 TW/cm2, the laser spot was heated up to ∼520 K, which however was still less than the glass transition temperature (Tg=688 K). This technique provides a useful sensing method of laser spot temperature even inside transparent materials.  相似文献   

7.
The Ce3+ ion was introduced into Er3+ doped TeO2-GeO2-Nb2O5-Li2O (TGNL) glass to improve the 1.5 μm fluorescence characteristics. As increasing of Ce3+ concentration, the lifetime of Er3+:4I11/2 level is shortened form 360 to 225 μs, while the Er3+:4I13/2 level remains unchanged. Accordingly, the upconversion fluorescence (blue, green and red) was quenched. Improved 1.5 μm emission is obtained and the reason is ascribed to the increase of nonradiative rate between the 4I11/2 and 4I13/2 level of the Er3+ ions.  相似文献   

8.
The comparative investigation on the spectroscopic properties of Er3+ in low phonon energy Bi2O3-GeO2-Ga2O3-Na2O glasses codoped with Ce3+ ion and added with B2O3 component, respectively, is presented. With increasing Ce2O3 content from 0 to 0.8 mol% or B2O3 content from 0 to 15 mol%, the lifetime of Er3+:4I11/2 level decreases dramatically from 607 to 283 μs or to 197 μs, and the upconversion fluorescence is quenched in both glass samples. The nonradiative energy transfer from Er3+:4I11/2→Ce3+:2F5/2 or the enhanced multiphonon relaxation process together with the energy transfer between Er3+ and OH groups are, respectively, responsible for the results. Meanwhile, the lifetime of 4I13/2 level remains almost unchanged in Er3+/Ce3+-codoped glasses whereas it decreases rapidly in B2O3-added cases. As a result, Er3+/Ce3+ codoping improves the 1.5 μm fluorescence emission intensity, however, B2O3 addition has a negative effect on it. The research results indicate that the Er3+/Ce3+-codoped bismuth glasses will be preferable for obtaining efficient 980 nm pumped EDFA.  相似文献   

9.
The 1 mol% Er3+- and 0-20 mol% Yb3+-codoped Al2O3 powders have been prepared by the nonaqueous sol-gel process using aluminum isopropoxide as precursor, acetylacetone as chelating agent, nitric acid as catalyzer, and hydrated erbium and ytterbium nitrate as dopant under isopropanol environment. The two crystalline types of doped Al2O3, γ and θ, and a stoichiometric compound, (Yb,Er)3Al5O12, were obtained for all the Er3+-Yb3+-codoped Al2O3 powders at the sintering temperature of 1000 °C. The maximal intensity of both the green and red up-conversion emissions centered at about 523, 545, and 660 nm was observed for the 1 mol% Er3+- and 10 mol% Yb3+-codoped Al2O3 powders. The intensity ratio of the red to green up-conversion emission (Ired/Igreen) increased with increasing the Yb3+ doping concentration for the Er3+-Yb3+-codoped Al2O3 powders. Furthermore, the intensity ratio of the green up-conversion emission at about 523 to 545 nm (I523/I545) was proportional to the Yb3+ doping concentration and pump electric current, which was associated with the elevated temperature of powders.  相似文献   

10.
A series of Er3+-doped Bi2O3-B2O3-SiO2-Na2O glasses with different hydroxyl groups were prepared and the interaction between the Er3+ ions and OH groups was investigated. Infrared spectra were measured in order to calculate the exact content of OH groups in samples. The observed increase of the fluorescence lifetime with the oxygen bubbling time has been related to the reduction in the OH content concentration evidenced by infrared (IR) absorption spectra, which confirmed that the OH groups were dominant quenching centers of excited Er3+ and a cause of concentration quenching of 1.5 μm band emission. Various nonradiative decay rates from 4I13/2 of Er3+ with the change of OH content were determined from the fluorescence lifetimes and radiative decay rates, which were calculated on the basis of Judd-Ofelt theory.  相似文献   

11.
The site-selective and time-resolved fluorescence laser spectroscopy and kinetic measurements with high spectral and nanosecond temporal resolution was applied to analyze the high-energy wing of the M and N absorption bands of the 4I9/2(1)→4G5/2(1) crystal-field (CF) transition in a CaF2:Nd3+ (0.6 wt%) crystal at 4.2 K. It was found that at helium temperatures the dynamically split spectral line assigned as the 4I9/2(1)→4G5/2(1) (CF) transition of coherently coupled Nd3+ ions in the pair M- and quartet N-centers of CaF2:Nd3+ (0.6 wt%) is inhomogeneously broadened. It consists of the pair M- and quartet N-centers with at least 0.1 A variation of the positions of the fluorescence-excitation spectral lines registered at the 4F3/2(1)→4I9/2(1) CF transition. Small fluorescence-lifetimes variation of the 4F3/2 and 4D3/2 levels from the small variation of the distances R between Nd3+ ions in the pair is found. At least 2.7% variation of the value of the Nd-Nd distance R in the pair M-center was determined from the lifetime variation of the 4F3/2 manifold with the assumption of a dipole-dipole interaction between the ions in the pair.The energy transfer up-conversion process responsible for the UV fluorescence observed when pumping the 4I9/2(1)→4G5/2(1) transition has been determined.  相似文献   

12.
Single-frequency diode lasers have been frequency stabilized to 1.5 kHz Allan deviation over 0.05-50 s integration times, with laser frequency drift reduced to less than 1.4 kHz/min, using the frequency reference provided by an ultranarrow inhomogeneously broadened Er3+:4I15/24I13/2 optical absorption transition at a vacuum wavelength of 1530.40 nm in a low-strain LiYF4 crystal. The 130 MHz full-width at half-maximum (FWHM) inhomogeneous line width of this reference transition is the narrowest reported for a solid at 1.5 μm. Strain-induced inhomogeneous broadening was reduced by using the single isotope 7Li and by the very similar radii of Er3+ and the Y3+ ions for which it substitutes. To show the practicability of cryogen-free cooling, this laser stability was obtained with the reference crystal at 5 K; moreover, this performance did not require vibrational isolation of either the laser or crystal frequency reference. Stabilization is feasible up to T=25 K where the Er3+ absorption thermally broadens to ∼500 MHz. This stabilized laser system provides a tool for interferometry, high-resolution spectroscopy, real-time optical signal processing based on spatial spectral holography and accumulated photon echoes, secondary frequency standards, and other applications such as quantum information science requiring narrow-band light sources or coherent detection.  相似文献   

13.
Er3NbO7 phosphor was synthesized by sintering a mixture of Er2O3 and Nb2O5 powder in a molar ratio of 3:1 at 1600 °C over 55 h. Optical absorption and emission characteristics of Er3+ ions in the calcined Er3NbO7 powder were investigated and discussed compared with ErNbO4 phosphor and a Z-cut congruent Er (2 mol%):LiNbO3 single crystal. The absorption and emission studies show that, due to different crystal structures, the spectroscopic properties of these niobates have some differences in spectral shape, peak position, and relative intensity, especially at 1.5 μm. The most obvious spectral feature of the Er3NbO7 is that the spectral structure of band instead of peak is observed in its absorption or emission spectrum due to the existence of local structural disorder and multiple Er3+ sites. The Er3NbO4 shows stronger upconversion emission than the single crystal but weaker than the ErNbO4. Experimental results show that energy transfer upconversion and/or excited state absorption play a dominant role in the upconversion emissions, and, at higher pump level (>200 mW), the thermal effect becomes significant and results in drop of the upconversion intensity. The 1.5 μm lifetimes of Er3+ ion in the Er3NbO7, ErNbO4 phosphor, and in the Er:LiNbO3 crystal are measured to be ∼5.3, 2.0, and 2.4 ms, respectively. In combination with the measured Raman spectra, the quantum efficiency, multiphonon nonradiative decay rate, and theoretical radiative lifetime of the 1.5 μm emission of the two powder materials are expected. The differences in upconversion intensity and measured 1.5 μm lifetime between the three materials are explained qualitatively.  相似文献   

14.
在室温下,测量了Er:Tm:NaY(WO4)2晶体的吸收光谱、激发光谱、发射光谱以及上转换发光,并运用J-O理论对测量的结果进行了计算,得出了Er:Tm:NaY(WO4)2晶体的强度参数.报道了Tm,Er离子间特殊的能量传递和相关上转换,解释了离子间的能级跃迁过程.同时,对于Er增强Tm离子近红外发光的特性也作了充分研究. 关键词: 4)2晶体')" href="#">Er:Tm:NaY(WO4)2晶体 吸收光谱 发射光谱 激发光谱 上转换  相似文献   

15.
B.S. Cao  Y.Y. He  M. Song 《Optics Communications》2011,284(13):3311-3314
Crystalline structures and infrared-to-visible upconversion luminescence spectra have been investigated in 1 mol% Er3+, 10 mol% Yb3+ and 0-20 mol% Li+ codoped TiO2 [1Er10Yb(0-20)Li:TiO2] nanocrystals. The crystalline structures of 1Er10Yb(0-20)Li:TiO2 were divided into three parts by the addition of Yb3+ and Li+. Both green and red upconversion emissions were observed from the 2H11/2/4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of Er3+ in Er3+-Yb3+-Li+ codoped TiO2, respectively. The green and red upconversion emissions of 1Er:TiO2 were enhanced significantly by Yb3+ and Li+ codoping, in which the intensities of green and red emissions and the intensity ratio of green to red emissions (Igreen/Ired) were highly dependent on the crystalline structures. The significant enhanced upconversion emissions resulted from the energy migration between Er3+ and Yb3+ as well as the distortion of crystal field symmetry of Er3+ caused by the dissolving of Li+ at lower Li+ codoping concentration and the phase transformation at higher Li+ concentration. It is concluded that codoping with ions of smaller ionic radius like Li+ can efficiently improve the upconversion emissions of Er3+ or other rare-earth ions doped luminsecence materials.  相似文献   

16.
Good quality crystals ZnWO4 activated with Er3+ have been grown by means of Czochralski method and characterized using optical spectroscopy techniques. XRD, absorption spectra, fluorescence spectrum are presented and the Judd-Ofelt intensity parameters Ω2, Ω4, and Ω6 are obtained to be 6.76×10-20, 0.37×10-20, and 0.50×10-20 cm2, respectively. Along crystallographic axes, refractive indices are presented. The fluorescence decay time of the 4I13/2 level has also been investigated and shows an exponential behavior with a lifetime value of 5.52 ms. The crystal is potentially used for green and infrared eye-safe lasers.  相似文献   

17.
The B2O3 component was introduced into Er3+/Ce3+ co-doped TeO2-ZnO-Na2O-Nb2O5 glass to improve energy transfer rate of Er3+:4I11/2→Ce3+:2F5/2 phonon-assisted cross-relaxation process. With the 6 mol% substitution of B2O3 for TeO2, the energy transfer rate increased from 1300 to 1831 s−1 and the fluorescence intensity increased by about 13.4%. However, the more B2O3 substitution in the same glass system reduced the quantum efficiency of Er3+:4I13/24I15/2 transition due to the higher OH group concentration. The results show that an appropriate amount of B2O3 component can be used to improve the phonon-assisted energy transfer rate and enhance 1.53 μm fluorescence emission by increasing the phonon energy of host glass. The effect of B2O3 on the energy transfer process, the lifetimes of the 4I11/2 and 4I13/2 levels, and the upconversion emission have also been investigated.  相似文献   

18.
In an attempt to find a neodymium-vanadate system with long lifetime of 4F3/2 level and relatively strong 4F3/24I11/2 emission for laser applications, the optical properties of Nd3+ in a new KZnLa(VO4)2 host is reported. The crystalline samples were obtained at 900 °C in air. The samples were crystallized in monoclinic system and were isostructural with KZnLa(PO4)2. KZnLa0.99Nd0.01(VO4)2 strongly emits in the near infrared range with the maxima at 871.6 and 1057 nm upon excitation through the 4F5/2 level (808 nm) or by the charge transfer bands of VO43−. The lifetime of 4F3/2 level of Nd3+ ion is larger than that observed in other neodymium-vanadates systems.  相似文献   

19.
The phosphors, Bi3+- activated Gd2O3:Er3+, were prepared by sol-gel combustion method, and their photoluminescent properties were investigated under ultraviolet light excitation. The emission spectrum exhibited sharp peaks at about 520, 535, 545, 550 and 559 nm due to (2H11/2, 4S3/2)→4I15/2 transitions of Er3+ ions. The luminescent intensity was remarkably improved by the incorporation of Bi3+ ions under 340 nm light excitation, which suggested very efficient energy transfer from Bi3+ ions to Er3+ions. The introducing of Bi3+ ions broadened the excitation band of the phosphor, of which a new strong peak occurred ranging from 320 to 360 nm due to the 6s2→6s6p transition of Bi3+ ions. There is significant energy overlap between the emission band of Bi3+ ions and the excitation band of Er3+ ions. Under 340 nm light excitation, Bi3+ absorbed most of the energy and transferred it to Er3+. The energy transfer probability from Bi3+ to Er3+ is strongly dependent on the Bi3+ ion concentration. Also, the sensitization effectiveness was studied and discussed in this paper.  相似文献   

20.
Optical absorption and emission spectra of Er3+/Yb3+ ions in PLZT (Pb1−xLaxZryTi1−yO3) ceramic have been studied. Based on the Judd—Ofelt (J-O) theory, the J-O intensity parameters were calculated to be Ω2=2.021×10−20 cm2, Ω4=0.423×10−20 cm2, Ω6=0.051×10−20 cm2 from the absorption spectrum of Er3+/Yb3+-codoped PLZT. The J-O intensity parameters have been used to calculate the radiative lifetimes and the branching ratios for some excited 4I13/2, 4I11/2, 4I9/24F9/2, and 4S3/2 levels of Er3+ ion. The stimulated emission cross-section (8.24×10−21 cm2) was evaluated for the 4I13/24I15/2 transition of Er3+. The upconversion emissions at 538, 564, and 666 nm have been observed in Er3+/Yb3+-codoped PLZT by exciting at 980 nm, and their origins were identified and analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号