首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Complexation and photophysical properties of complexes of lanthanide ions, Ln(III), with diethyl(phthalimidomethyl)phosphonate ligand, DPIP, were studied. Interactions between Ln(III) and DPIP were investigated using Nd(III) absorption and Eu(III) and Tb(III) luminescence (emission and excitation) spectra, recorded in acetonitrile solution containing different counter ions (NO3-, Cl- and ClO4-). Results of the absorption spectroscopy have shown that counter ions play a significant role in the complexation of Ln(III)/DPIP complexes. Studies of luminescence spectra of Eu(III) and Tb(III) ions proved that the formation of Ln(III)/DPIP complexes of stoichiometry Ln:L=1:3 is preferred in solution. Based on the results of elemental analysis, Nd(III) absorption spectra and IR and NMR data, it was shown that the DPIP ligand binds Ln(III) ions via oxygen from phosphoryl group, forming complexes of a general formula Ln(DPIP)3(NO3)3·H2O, in which the NO3- ions are coordinated with the metal ion as bidentate ligands. Luminescent properties and energy transfer, from the ligand to Ln(III) ions in the complexes formed, were studied based on the emission and excitation spectra of Eu(III) and Tb(III). Their luminescent lifetimes and emission quantum yields were also measured.  相似文献   

2.
A novel ligand with double sulfinyl groups, bis(benzylsulfinyl)methane, was synthesized by a new method and its two lanthanide (III) complexes were synthesized and characterized by element analysis, molar conductivity, coordination titration analysis, IR, TG-DSC, 1HNMR and UV spectra. The results indicated that the composition of these complexes was REL2.5(ClO4)3·3H2O (RE = Tb (III), Dy (III), L = C6H5CH2SOCH2SOCH2C6H5). The FT-IR results revealed that the perchlorate group was bonded with the lanthanide ion by the oxygen atoms, and the coordination was bidentate. The fluorescent spectra illustrated that both the Tb (III) and Dy (III) complexes displayed characteristic fluorescence in solid state, especially for the Tb (III) complex, the peak of 5D4 → 7 F5 of the Tb (III) ion in 544 nm was stronger than that of others. It indicated that the Tb (III) complex could emit purer green fluorescence. By analysis fluorescence and phosphorescence spectra, it was found that the ligand had the advantage to absorb energy and transfer it to the Tb (III) and Dy (III) ions. The phosphorescence spectra and fluorescence lifetimes of the complexes were also measured.  相似文献   

3.
A new Eu(III)/Tb(III) binuclear coordination compound with red and yellow emissions in solution and solid state, respectively, has been prepared. The lanthanide (Ln) ions are coordinated to crown ethers (C) and bridged by a dipyridyl (dipy) ligand. Ln/C and Ln/C/dipy complexes were also synthesized as precursors for the bimetallic compounds. The homo- and heterobimetallic Ln(III) complexes were characterized by elemental analysis as well as infra-red, absorption (UV-visible) and emission spectroscopies. The heterobimetallic complex geometry was predicted using the Sparkle/AM1 model and suggested to a chemical environment of very low symmetry around the lanthanide ions (C1), in agreement with the luminescence spectrum. The Eu(III) and Tb(III) complexes display intense red and green emissions, respectively, in the solid state at room temperature.  相似文献   

4.
The synthesis and characterization of [5-(p-alkacyloxy ) phenyl-10,15,20-tri-phenyl] porphyrin (APTPP) and its lanthanide complexes(lanthanide ions: Ho(III), Dy(III), Er(III), Yb(III)) are reported. They form hexagonal columnar discotic columnar (Colh) liquid crystals over an extended domain of temperature. Luminescence spectra of the compounds are discussed. Quantum yields of Q band are in the region 0.004570-0.05847. The electrochemical property is studied by cyclic voltammetry. The synthesized APTPP and its lanthanide complexes exhibit two one-electron reversible redox reactions and three redox reactions, respectively. The photovoltaic properties and charge-transfer process of the liquid crystalline compounds are investigated by surface photovoltage spectroscopy (SPS) and electric-field-induced surface photovoltaic spectroscopy (EFISPS) techniques, and the bands are analogous with the ultraviolet (Uv) -visible absorption spectra, which reveal that all compounds are P-type semiconductors. All of compounds are nonelectrolytes.  相似文献   

5.
To explore the relationship between the structure of the ligands and the luminescent properties of the lanthanide complexes, a series of lanthanide nitrate complexes with two novel structurally related multipodal ligands, 1,3-bis{[(2’-(2-picolylaminoformyl))phenoxyl]methyl}benzene (L I ) and 1,2-bis{[(2’-(2-picolylaminoformyl))phenoxyl]methyl}benzene (L II ), have been synthesized and characterized by elemental analysis, infrared spectra and molar conductivity measurements. At the same time, the luminescent properties of the Eu(III) and Tb(III) nitrate complexes in solid state and the Tb(III) nitrate complexes in solvents were investigated at room temperature. Under the excitation of UV light, these complexes exhibited characteristic emissions of central metal ions. The lowest triplet state energy levels T1 of these ligands both match better to the lowest resonance energy level of Tb(III) than to Eu(III) ion. The influence of the structure of the ligands on the luminescent intensity of the complexes was also discussed.  相似文献   

6.
The intensity I lum and lifetime τlum of the luminescence of complexes of Eu(III) and Tb(III) ions with β-diketones and o-phenanthroline in water-ethanol solutions of these ligands have been analyzed as functions of the concentrations of ligand, luminescing lanthanide ions, and added ions causing columinescence and of the solvent deuteration. It is shown that the formation of nanostructures from Ln complexes and their coarsening leads to an increase in τlum of Eu(III) and Tb(III) and that this increase is due to the suppression of both photochemical deexcitation of these ions and transfer of their electronic excitation energy to OH vibrations of water molecules. The disappearance of the dependence of I lum of Eu(III) on deuteration of water-ethanol solutions of n-methoxybenzoyltrifluoracetone + o-phenanthroline caused by adding Gd(III) ions is explained by the shift of the equilibrium of formation of complexes of Ln chelates to neutral hydrophoblic forms corresponding to the formation of nanostructures of these chelates in the solution. The differences in effect of La(III) and Gd(III) ions on I lum and τlum of Eu(III) and Tb(III) complexes are explained. It is shown that the widely discussed effect of columinescence not only results from the energy migration in mixed structures of Eu or Tb complexes and Gd complexes but is also due to a large extent to the decrease in τlum of Eu(III) or Tb(III) caused by their incorporation into nanostructures.  相似文献   

7.
Solid complexes of lanthanide nitrates, picrates and perchlorates with a novel multipodal ligand, 1,2,4,5-tetramethyl-3,6-bis{N,N-bis[((2′-benzylaminoformyl)phenoxyl)ethyl]-aminomethyl}-benzene (L) have been synthesized and characterized by elemental analysis, infrared spectra and molar conductivity measurements. At the same time, the luminescent properties of the Eu and Tb complexes in solid state were investigated. Under the excitation of UV light, these complexes exhibited characteristic emission of central metal ions. The lowest triplet state energy level T1 of this ligand matches better to the lowest resonance energy level of Tb(III) than to Eu(III) ion. The influence of the counter anion on the luminescent intensity was also discussed.  相似文献   

8.
Rare-earth complexes [(TbxTmy)L5(ClO4)2](ClO4)·3H2O(x:y=1.000:0.000, 0.999:0.001, 0.995:0.005, 0.990:0.010, 0.950:0.050, 0.900:0.100, 0.800:0.200, 0.700:0.300; L=C6H5COCH2SOCH2COC6H5) were synthesized and characterized with elemental analysis, infrared spectra (IR) and 1H NMR. The photophysical properties of these complexes were studied in detail with ultraviolet absorption spectra, fluorescent spectra and lifetimes. The fluorescence spectra and decay curves of complexes indicated that the fluorescence emission intensity was enhanced and the fluorescence lifetime was prolonged by Tm (III), which may be due to the intra-molecular energy transfer between inert rare-earth ions and active rare-earth ions. The complexes showed the best properties when the mole ratio of Tb (III) to Tm (III) is 0.995:0.005. The intensity of fluorescence can be increased to 208%. Additionally, the energy-transfer mechanisms between the ligand and the central Tb (III) ions were discussed.  相似文献   

9.
Solid complexes of lanthanide nitrates with a new unsymmetrical tripodal ligand, bis[(2′-benzylaminoformyl)phenoxyl)ethyl](ethyl)amine (L) have been synthesized and characterized by elemental analysis, infrared spectra and molar conductivity measurements. At the same time, the luminescent properties of the Sm(III), Eu(III), Tb(III) and Dy(III) nitrate complexes in solid state were also investigated. Under the excitation of UV light, these complexes exhibited characteristic emission of central metal ions.  相似文献   

10.
Photophysical properties of a multidentate tripodal ligand, 5,5′-(2-(((8-hydroxyquinolin-5-yl) methylamino)methyl)-2-methylpropane-1,3-diyl) bis (azanediyl)bis (methylene)diquinolin-8-ol, (TAME5OX), with La3+ and Er3+ ions have been examined for photonics applications. The change in behavior in electronic spectra of these complexes reveals the use of TAME5OX as a sensitive optical pH based sensor to detect Ln3+ ions whereas indication of strong green fluorescence allows simultaneous sensing within the visible region in competitive medium. The intense fluorescence intermittently gets quenched under acidic and basic conditions due to photoinduced intramolecular electron transfer from the excited 8-hydroxyquinoline (8-HQ) moiety to the metal ion. This renders these compounds the OFF-ON-OFF type of pH-dependent fluorescent sensor. The thermodynamic stability and coordination behaviour of the chelator with the said lanthanide ions have also been probed by potentiometric, UV ? visible and fluorescence spectrophotometric method. TAME5OX forms protonated complex [Ln (H4L)]4+ below pH ~4.0 which sequentially deprotonates through one proton process with increase of pH. The stability constants of neutral complexes have been determined to be in the range log β110 = 32–34 and pLn in the range of 14–20, indicating TAME5OX is a good synthetic lanthanide chelator. Theoretical spectra were also calculated by ZINDO/s methodology at single excitations (CIS) level on PM7 as sparkle energy-minimized geometries.  相似文献   

11.
We have studied the sensitized fluorescence of coumarin 30 incorporated into nanoparticles from complexes of p-phenylbenzoyltrifluoroacetone and 1,10-phenanthroline with Y, La, Lu, Gd, Al, and Sc ions in 10% alcoholic-aqueous solutions. We have shown that, upon formation of nanoparticles from complexes of Y(III) and Ln(III) ions, coumarin 30 molecules are completely incorporated from the solution into nanoparticles from complexes up to dye concentrations in the solution comparable with the concentration complexes. For the nanoparticles under study, in the whole range of the examined dye concentrations, concentration quenching of the coumarin 30 cofluorescence has not been observed. Our results show that coumarin 30 is incorporated into lanthanide and yttrium complexes as a synergistic bidentate ligand. The possibility of creating brightly luminescent markers that absorb not only in the range of 360?C370 nm, but also in the range of 440?C450 nm, and have a narrow fluorescence spectrum with ??max = 520 nm has been demonstrated.  相似文献   

12.
A novel Aryl amide ligand H2L and its eight complexes, [LnH2L(NO3)2·H2O]NO3 [Ln=Sm(III), Er(III), Tb(III), Dy(III), La(III), Gd(III), Nd(III), and Pr(III)], are presented. The ligand and complexes were synthesized and characterized based on elemental analyses, molar conductance, IR, 1H and 13C-NMR, UV–VIS., and TGA studies. The conductivity data show a 1:1 electrolytic nature with a general formula [LnH2L(NO3)2·2H2O]NO3 The IR spectra reveal coordination of the ligand through the azomethine nitrogen and the phenolic hydroxyl of the ligand to the lanthanide ion. The coordinated nitrate ions behave in a bidentate fashion. The thermal decomposition studies indicate the presence of two water molecules in the inner coordination sphere. Under the excitation at 319 nm, the luminescence emission properties for Sm, Tb, and Dy complexes are observed. These observations show that the ligand favors energy transfers to the emitting energy level of these lanthanide ions. Furthermore, the antioxidant activity of the ligand and its Ln(III) complexes was determined by DPPH radical scavenging method, which indicates that the Ln(III) complexes exhibit more effective antioxidant activity than the ligand alone.  相似文献   

13.
It is demonstrated that colloidal magnetite nanoparticles can be used as nanosorbents for lanthanide ions dissolved in water. In particular, a series of experiments are performed for the removal of Eu(III) in distinct analytical conditions and by applying an external magnet to collect the sorbents previously dispersed in water samples. Furthermore, strategies for surface chemistry functionalization are also investigated, aiming to investigate the effect of this parameter on the removal capacity of the Fe3O4 nanoparticles. The supernatant solutions are monitored for the remaining amount of Eu(III) by fluorescence emission measurements in the presence of 2,6‐pyridinedicarboxylic acid as a sensitizer. The results demonstrate that neat Fe3O4 nanoparticles are capable of capturing lanthanide ions (III) from aqueous solutions (pH 7), without need of surface modification, and for subsequent removal by magnetic separation. During the removal, efficiency is increased after modifying the particles' surfaces with silica and 3‐aminopropyltrimethoxysilane; in alkaline medium (pH 10), there is complete removal regardless the type of nanosorbent used. This has been explained by the formation of insoluble Eu(III) species that adsorb strongly to the nanosorbents surfaces allowing their subsequent magnetic separation.  相似文献   

14.
The energy transfer between different pairs of lanthanide ions bonded by fluoride bridges into labile binuclear complexes is studied in aqueous solution at different ratios between the concentrations of lanthanide ions and fluoride anions ([Ln]: [F]). It is shown that, if the concentrations [Ln] and [F] are of the same order of magnitude, the energy transfer rate constant k t does not depend on the choice of the pairs of interacting ions and is determined by the association rate constant of Ln(III) ions into binuclear complexes. If the concentration of the lanthanide ions is much greater than that of the fluoride ions, k t varies proportionally to the monomolecular energy transfer rate constants in the binuclear complexes. It is assumed that, in the first case, Ln(III) ions are bonded through two fluoride anions, whereas, in the second case, they are bonded through one anion. The analysis of the variations in k t in the latter systems shows that the exchange-resonance mechanism should be taken into account for the explanation of the experimental data. The effects that the introduction into the solution of different contents of salts of strong acids—AlCl3, MgCl2, Ca(NO3)2, CsCl, RbBr, and NaCl—have on k t and on the regularities of the energy transfer between Ln(III) ions bonded into binuclear fluoride complexes are studied. The effects of these electrolytes on the luminescence intensity and spectrum of Eu(III) ions and on the values of k t for the energy transfer between Ln(III) ions bonded into binuclear complexes are analyzed. It is shown that, at some concentration ratio [Ln]: [F], for all electrolytes studied except AlCl3, the value of k t increases despite the fact that the concentration of mononuclear complexes of Ln(III) ions with fluorine decreases in the presence of these electrolytes. It is ascertained that the anions of strong acids in the outer sphere of lanthanide ions increase the association constant of Ln(III) ions in binuclear fluoride complexes.  相似文献   

15.
New eight lanthanide metal complexes were prepared. These complexes were characterized by elemental analysis, molar conductivity measurements, spectral analysis (1H NMR, FT-IR, UV–vis), luminescence and thermal gravimetric analysis. All Ln(III) complexes were 1:1 electrolytes as established by their molar conductivities. The microanalysis and spectroscopic analysis revealed eight-coordinated environments around lanthanide ions with two nitrate ligands behaving in a bidentate manner. The other four positions were found to be occupied with tetradentate LIII ligand. Tb–LIII and Sm–LIII complexes exhibited characteristic luminescence emissions of the central metal ions and this was attributed to efficient energy transfer from the ligand to the metal center. The LIII and Ln–LIII complexes showed antibacterial activity against a number of pathogenic bacteria.  相似文献   

16.
The lanthanide (III) 4-alkoxybenzoates [Ln(CnH2n?+?1OC6H4CO2)3, Ln?=?La (III), Pr (III), Nd (III), Eu (III), Gd (III), Tb (III) and Dy (III) and n?=?6, 8, 10, 12 and 16] have been synthesized and characterized by elemental analyses, magnetic susceptibility measurements, and IR and electronic spectroscopy. Hot-stage polarizing optical microscopy and differential scanning calorimetry have been used to investigate the mesomorphic behaviour. The chain length influences the structure and hence the thermal behaviour of these compounds. All the lanthanide complexes except decyloxy derivatives exhibit smectic A mesophase. The decyloxy-containing complexes are non-mesomorphic. The differential scanning calorimeter traces do not display the exothermic peak for all the compounds except for the hexadecyloxy derivatives, which exhibit enantiotropic smectic A phase. The influence of the lanthanide ions on the phase transition has also been clearly demonstrated.  相似文献   

17.
Luminescence properties of lanthanide(III) ions (Ln = Nd, Sm, Eu, Gd, Tb, Dy and Tm) were investigated by measuring the excitation and emission spectra, and emission lifetimes in H2O and D2O solutions of 3 moll?1 K2CO3, where anionic tetra-carbonate complexes, [Ln(CO3)4]5- were the predominant species.

Electronic transitions of the carbonato complex corresponding to both the excitation and emission spectra were assigned from the energy level diagrams of Ln(III) and compared with those of the aqua ion. Enhancement of emission intensity of the complex was observed at particular excitation transitions of Eu(III), Gd(III) and Tb(III), and at particular emission transitions of Sm(III), Eu(III), Dy(III) and Tm(III). The enhancement at the emission transition was estimated quantitatively as a branching ratio from the lowest emitting state of Ln(III), and discussed in terms of hypersensitivity.

Emission lifetimes of the carbonato complexes were all longer than those of aqua ions in H2O solution, while the lifetimes of the complexes for Eu(III) and Tb(III) shorter than those in D2O solution. The difference in non-radiative decay constants for the excited complex in H2O and D2O solutions was found to be proportional to an exponential of the energy gap of Ln(III). The lifetime ratio between the H2O and D2O solutions showed the order of Sm > Dy > Eu > Tb, corresponding to the opposite order of the energy gap. These were discussed in terms of an energy gap law, i.e. a relationship between the energy gap of Ln(III) and vibration energies of the ligand or water molecules.  相似文献   

18.
This paper reports the structural, magnetic and optical properties of three series of lanthanide complexes [Ln(radical)4](ClO4)3, [Ln(radical)2(NO3)3] and [Ln(radical)(hfac)3] (Ln=Gd(III), La(III) or Eu(III)) with nitronyl or imino nitroxide radicals.The magnetic properties of the gadolinium complexes were studied. Along the series, most gadolinium(III) complexes exhibit antiferromagnetic GdIII-radical interaction. These results are discussed.The full absorption and luminescence spectra of some lanthanide complexes and their uncoordinated free radical ligands were measured. The rich vibronic structure in luminescence and absorption spectra indicates that several excited states define the absorption spectra between 400 and 800 nm. Qualitative trends can be established between magnetic ground state properties and the energies and vibronic structure of the title compounds.  相似文献   

19.
The effect of anions contained in solutions on the energy transfer from Tb(III) and Dy(III) ions to different Ln(III) ions is investigated in aqueous and alcohol solutions. It is shown that the regularities revealed in the energy transfer are completely determined by the ratio between the dissociation rate of the binuclear complex and the rate of energy transfer in it. The rate constant k t of energy transfer in solutions in which labile binuclear complexes of Ln(III) ions are linked through the strong acid anions Cl?, NO 3 ? , and HSO 4 ? depends on the nature of ions in the pairs. It is demonstrated that the energy transfer in all the systems predominantly occurs through the induction-resonance mechanism. The rate constants k t in aqueous solutions of weak (acetic, salicylic, and carbonic) acids also depend on the nature of ions interacting in pairs but do not correlate with the Förster overlap integral of the spectra. In labile binuclear complexes, the interaction between these ions proceeds by the exchange-resonance mechanism at a distance of ≈0.4 nm. It is established that the constants k t in alcohol solutions of Ln(III) ions are virtually independent of the nature of the pairs of the ions interacting through the acetate bridge. A comparison of the dissociation rate constants for Ln-anion complexes in alcohol solutions and the expected intracomplex rates of energy transfer in the binuclear complexes offers a satisfactory explanation of the obtained results and makes it possible to determine the association constants for binuclear lanthanide complexes in these solutions.  相似文献   

20.
The reactions of lanthanide nitrates with a Schiff-base ligand HL (2-[(2-hydroxypropylimino)methyl] phenol) have produced five new complexes with formula as [Ln2(L)3(NO3)3]CH3OH(Ln=Gd 1, Tb 2, Dy 3, Ho 4, Er 5). These new complexes are characterized by elemental analysis, IR and X-ray diffraction, as well as fluorescence spectra. Single-crystal X-ray diffraction analysis reveals that all the complexes crystallize in the trigonal system, space group R-3. Fluorescence spectroscopy of Tb(III) and Dy(III) complexes display strong characteristic metal-centered fluorescence in solid state, which demonstrates that luminescence is sensitized by the effective energy-transfer from ligand to the metals. The fluorescence lifetimes of complex 2 and 3 are also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号