首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The type of a phase transition in the quasi-equilibrium system of exciton polaritons in a two-dimensional optical microcavity has been analyzed. It has been shown that, although the system contains two types of bosons undergoing mutual transformations into each other, only one phase transition to the superfluid state with the quasilong-range order occurs in the two-dimensional system. This phase transition is a Kosterlitz-Thouless phase transition. A new physical implementation—excitons in a photon crystal—has been proposed for the Bose condensation of exciton polaritons. The superfluid properties of the ordered phase are discussed, and the superfluid density and Kosterlitz-Thouless transition temperature have been calculated in the low-density approximation.  相似文献   

2.
Path-integral Monte Carlo calculations of the superfluid density throughout 4He droplets doped with linear impurities are presented. After deriving a local estimator for the superfluid density distribution, we find a decreased superfluid response in the cylindrically symmetric region of the first solvation layer. The helium in this region has a superfluid transition temperature similar to that of a two-dimensional helium system and may be responsible for previously unexplained experimental Q-branch measurements.  相似文献   

3.
A phase transition for bosonic atoms in a two-dimensional anisotropic optical lattice is considered. If the tunnelling rates in two directions are different, the system can undergo a transition between a two-dimensional superfluid and a one-dimensional Mott insulating array of strongly coupled tubes. The connection to other lattice models is exploited in order to better understand the phase transition. Critical properties are obtained using quantum Monte Carlo calculations. These critical properties are related to correlation properties of the bosons and a criterion for commensurate filling is established.  相似文献   

4.
We have studied the collective properties of two-dimensional (2D) excitons immersed within a quantum well which contains 2D excitons and a two-dimensional electron gas (2DEG). We have also analyzed the excitations for a system of 2D dipole excitons with spatially separated electrons and holes in a pair of quantum wells (CQWs) when one of the wells contains a 2DEG. Calculations of the superfluid density and the Kosterlitz–Thouless (K–T) phase transition temperature for the 2DEG-exciton system in a quantum well have shown that the K–T transition temperature increase with increasing exciton density and that it might be possible to have fast long-range transport of excitons. The superfluid density and the K–T transition temperature for dipole excitons in CQWs in the presence of a 2DEG in one of the wells increases with increasing inter-well separation.  相似文献   

5.
A dipole-oriented two-dimensional exciton system in electrically biased GaAs/AlGaAs coupled quantum wells has been studied through photoluminescence. The system has a sample-dependent built-in random potential which traps excitons at low temperature. The average photoluminescence photon energy shows a sudden reduction when the excitation intensity exceeds a critical value at low temperatures. This suggests a phase transition from a Bose glass to superfluid phase.  相似文献   

6.
We consider excitons in a two-dimensional periodic potential and study the linear response of the excitonic superfluid to an electromagnetic wave at low and high densities. It turns out that the static structure factor for small wavevectors is very sensitive to a change of density and temperature. It is a consequence of the fact that thermal fluctuations play a crucial role at small wavevectors, since exchanging the order of the two limits, zero temperature and vanishing wavevector, leads to different results for the structure factor. This effect could be used for high accuracy measurements in the superfluid exciton phase, which might be realized by a gated electron-hole gas, for instance, in coupled quantum wells or double layer materials. The transition of the exciton system from the superfluid state to a non-superfluid state and its manifestation by light scattering are discussed.  相似文献   

7.
We show that a two-dimensional (2D) array of 1D interacting boson tubes has a deconfinement transition between a 1D Mott insulator and a 3D superfluid for commensurate fillings and a dimensional crossover for the incommensurate case. We determine the phase diagram and excitations of this system and discuss the consequences for Bose condensates loaded in 2D optical lattices.  相似文献   

8.
We propose the Bose-Einstein condensation and superfluidity of quasi-two-dimensional spatially indirect magnetobiexcitons in a slab of superlattice with alternating electron and hole layers consisting from the semiconducting quantum wells (QWs) and graphene superlattice in high magnetic field. For this system the instability of the ground state of interacting two-dimensional indirect magnetoexcitons in a slab of superlattice with alternating electron and hole layers in high magnetic field is found. The density of superfluid component ns(T) and the temperature of the Kosterlitz-Thouless phase transition to the superfluid state in the system of two-dimensional indirect magnetobiexcitons, interacting as electrical quadrupoles, are obtained for both QW and graphene realizations.  相似文献   

9.
We analyze the ground-state properties and the excitation spectrum of Bose-Einstein condensates of photons and PPs in a two-dimensional optical microcavity. First, using the variational method, we discuss the ground-state phase transition of the two-component system. We also investigate the energy gap between the ground state and the first excited state. Moreover, by investigating the excitation spectrum, we also illustrate how the superfluid behavior of photons and PPs can be associated with the phase transition of the system.  相似文献   

10.
We analyze the ground-state properties and the excitation spectrum of Bose-Einstein condensates of photons and PPs in a two-dimensional optical microcavity. First, using the variational method, we discuss the ground-state phase transition of the two-component system. We also investigate the energy gap between the ground state and the first excited state. Moreover, by investigating the excitation spectrum, we also illustrate how the superfluid behavior of photons and PPs can be associated with the phase transition of the system.  相似文献   

11.
A system of two-dimensional photon gas has recently been realized experimentally. We show that this setup can be used to observe a universal breathing mode of photon gas and a modification in the experimental setup would open up a possibility of observing the Berezinskii–Kosterlitz–Thouless (BKT) phase transition in such a system. Furthermore, the universal jump in the superfluid density of light in the output channel can be used as an unambiguous signature for the experimental verification of the BKT transition.  相似文献   

12.
《Physics letters. A》2014,378(16-17):1185-1190
We study the superfluid phase transition in the two-dimensional (2D) excitonic system. Employing the extended Falicov–Kimball model (EFKM) and considering the local quantum correlations in the system composed of conduction band electrons and valence band holes we demonstrate the existence of the excitonic insulator (EI) state in the system. We show that at very low temperatures, the particle phase stiffness in the pure-2D excitonic system, governed by the non-local cross correlations, is responsible for the vortex–antivortex binding phase-field state, known as the Berezinskii–Kosterlitz–Thouless (BKT) superfluid state. We demonstrate that the existence of excitonic insulator phase is a necessary prerequisite, leading to quasi-long-range order in the 2D excitonic system.  相似文献   

13.
We investigate a mix-dimensional Fermi-Fermi mixtures in which one species is confined in two-dimensional (2D) space while the other is free in three-dimensional space (3D). We determine the superfluid transition temperature T c for the entire BCS-BEC crossover including the important effects of noncondensed pairs. We find that the transition temperature reduces while the imbalance of mass is increased or lattice spacing is reduced. In spin imbalance case, the stability of superfluid is sharply destroyed by increasing the polarization.  相似文献   

14.
We study finite-temperature phase transitions in a two-dimensional boson Hubbard model with zero-point quantum fluctuations via Monte Carlo simulations of a quantum rotor model and construct the corresponding phase diagram. Compressibility shows a thermally activated gapped behavior in the insulating regime. Finite-size scaling of the superfluid stiffness clearly shows the nature of the Kosterlitz-Thouless transition. The transition temperature T(c) confirms a scaling relation T(c) proportional, rho(0)(x), with x=1.0. Some evidence of anomalous quantum behavior at low temperatures is presented.  相似文献   

15.
Starting from the assumption that the normal solid to supersolid (NS-SS) phase transition is continuous, we develop a phenomenological Landau theory of the transition in which superfluidity is coupled to the elasticity of the crystalline lattice. We find that the elasticity does not affect the universal properties of the superfluid transition, so that in an unstressed crystal the well-known anomaly in the heat capacity of the superfluid transition should also appear at the NS-SS transition. We also find that the onset of supersolidity leads to anomalies in the elastic moduli and thermal expansion coefficients near the transition and, conversely, that inhomogeneous lattice strains can induce local variations of the superfluid transition temperature, leading to a broadened transition.  相似文献   

16.
We present a theoretical study of the superfluidity and the corresponding collective modes in two-component atomic Fermi gases with ss-wave attraction and synthetic Rashba spin–orbit coupling. The general effective action for the collective modes is derived from the functional path integral formalism. By tuning the spin–orbit coupling from weak to strong, the system undergoes a crossover from an ordinary BCS/BEC superfluid to a Bose–Einstein condensate of rashbons. We show that the properties of the superfluid density and the Anderson–Bogoliubov mode manifest this crossover. At large spin–orbit coupling, the superfluid density and the sound velocity become independent of the strength of the ss-wave attraction. The two-body interaction among the rashbons is also determined. When a Zeeman field is turned on, the system undergoes quantum phase transitions to some exotic superfluid phases which are topologically nontrivial. For the two-dimensional system, the nonanalyticities of the thermodynamic functions and the sound velocity across the phase transition are related to the bulk gapless fermionic excitation which causes infrared singularities. The superfluid density and the sound velocity behave nonmonotonically: they are suppressed by the Zeeman field in the normal superfluid phase, but get enhanced in the topological superfluid phase. The three-dimensional system is also studied.  相似文献   

17.
Recent calculations by Vorobev and Malyshenko [JETP Lett. 71, 39 (2000)] show that molecular hydrogen may stay liquid and superfluid in strong electric fields of the order of 4x10(7) V/cm. I demonstrate that strong local electric fields of similar magnitude exist beneath a two-dimensional layer of electrons localized in the image potential above the surface of solid hydrogen. Even stronger local fields exist around charged particles (ions or electrons) if the surface or bulk of a solid hydrogen crystal is statically charged. Measurements of the frequency shift of the 1 --> 2 photoresonance transition in the spectrum of a two-dimensional layer of electrons above a positively or negatively charged solid hydrogen surface performed in the temperature range 7-13.8 K support the prediction of electric field induced surface melting. The range of surface charge density necessary to stabilize the liquid phase of molecular hydrogen at the temperature of superfluid transition is estimated.  相似文献   

18.
We examine the equilibrium properties of lattice bosons with attractive on-site interactions in the presence of a three-body hard-core constraint that stabilizes the system against collapse and gives rise to a dimer superfluid phase. Employing quantum Monte Carlo simulations, the ground state phase diagram of this system on the square lattice is analyzed. In particular, we study the quantum phase transition between the atomic and dimer superfluid regime and analyze the nature of the superfluid-insulator transitions. Evidence is provided for the existence of a tricritical point along the saturation transition line, where the transition changes from being first order to a continuous transition of the dilute Bose gas of holes. The Berzinskii-Kosterlitz-Thouless transition from the dimer superfluid to the normal fluid is found to be consistent with an anomalous stiffness jump, as expected from the unbinding of half-vortices.  相似文献   

19.
We study a superfluid on a lattice close to a transition into a supersolid phase and show that a uniform superflow in the homogeneous superfluid can drive the roton gap to zero. This leads to supersolid order around the vortex core in the superfluid, with the size of the modulated pattern around the core being related to the bulk superfluid density and roton gap. We also study the electronic tunneling density of states for a uniform superconductor near a phase transition into a supersolid phase. Implications are considered for strongly correlated superconductors.  相似文献   

20.
We use quantum Monte Carlo simulations to determine the finite temperature phase diagram and to investigate the thermal and quantum melting of stripe phases in a two-dimensional hard-core boson model. At half filling and low temperatures the stripes melt at a first order transition. In the doped system, the melting transitions of the smectic phase at high temperatures and the superfluid smectic (supersolid) phase at low temperatures are either very weakly first order, or of second order with no clear indications for an intermediate nematic phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号