首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
本文从计算棒状引力波天线的指向性函数出发,讨论了引力波源的方位和天线棒方位之间的关系,找到了从符合实验数据求出引力波源方位以及利用单一引力波探测器对连续引力波源的定位方法。所得的结果也适用于其他形式的一维引力波天线。一旦引力波探测器的灵敏度达到足以确定引力波强度时,本文的结果无疑对引力波天文学将是很有意义的。 关键词:  相似文献   

2.
The first generation of gravitational wave interferometric detectors have taken data at, or close to, their design sensitivity. This data has been searched for a broad range of gravitational wave signatures. An overview of gravitational wave search methods and results are presented. Searches for gravitational waves from unmodelled burst sources, compact binary coalescences, continuous wave sources and stochastic backgrounds are discussed.  相似文献   

3.
The question whether gravitational waves are quantised or not can in principle be answered by the help of correlation measurements. If the gravitational waves are quantised and they are generated by the change of the background metrics then they can be squeezed. In a squeezed state there is a correlation between the phase of the wave and the quantum uctuations. It is proposed to analyse the data to be obtained by the gravitational detectors from the point of view of such correlations. Explicit formulae are derived for the squeezing parameters of the quantised gravitational waves. The head on collision of two identical black holes is analysed as a possible source of squeezed gravitational waves.  相似文献   

4.
Consequences in physical theory of assuming the general relativistic time transformation for the de Broglie frequencies of matter, v = E/h = mc2/h, are investigated in this paper. Experimentally it is known that electromagnetic waves from a source in a gravitational field are decreased in frequency, in accordance with the Einstein general relativity time transformation. An extension to de Broglie frequencies implies mass decrease in a gravitational field. Such a decrease gives an otherwise missing energy conservation for some processes; also, a physical alteration is then associated with change in gravitational potential. Further, the general relativity time transformation that is the source of gravitational action in the weak field (Newtonian) approximation then has a physical correlate in the proposed gravitational mass loss. Rotational motion and the associated equivalent gravitational-field mass loss are considered; an essential formal difference between metric (gravitational) mass loss and special relativity mass increase is discussed. For a spherical, nonrotating mass collapsed to its Schwarzschild radius the postulated mass loss is found to give a 25% decrease in the mass acting as origin of an external gravitational field.  相似文献   

5.
WUNing 《理论物理通讯》2003,40(4):429-434
Quantum gauge theory of gravity is formulated based on gauge principle. Because the Lagrangian has strict local gravitational gauge symmetry, gravitational gauge theory is a perturbatively renormalizable quantum theory. Gravitational gauge interactions of scalar field are studied in this paper. In quantum gauge theory of gravity, scalar field minimal couples to gravitational field through gravitational gauge covariant derivative. Comparing the Lagrangian for scalar field in quantum gauge theory of gravity with the corresponding Lagrangian in quantum fields in curved space-time, the definition for metric in curved space-time in geometry picture of gravity can be obtained, which is expressed by gravitational gauge field. In classical level, the Lagrangian and Hamiltonian approaches are also discussed.  相似文献   

6.
In earlier papers some proposals were made concerning experiments that could lead to the determination of the velocity of the gravitational interaction. This paper points out that this determination can only be achieved by measuring the delayed gravitational field and not by measuring the propagation velocity of gravitational radiation, which remains a controversial problem, both theoretically and experimentally. The possibility is shown of the existence of a gravitational effect not unlike the Poynting-Robertson light effect and the importance is discussed of its determination for space and astronomical research. Some of the proposed mechanisms for explaining the gravitational interaction are reviewed and their nonviability is objectively pointed out. Finally, conclusions are drawn as to the necessity of carrying out experiments to determine the velocity of the gravitational interaction.  相似文献   

7.
We consider, in lowest order of the gravitational coupling constant G, the gravitational potential between two neutrons. As we have previously pointed out [1],the quantum (including spin) contributions to the gravitational field dominate for distances smaller than the Compton wavelength of the neutron. At such distances the gravitational force between two neutrons may be repulsive. In particular, the gravitational forces which are analogous to the familiar Darwin and Fermi forces of quantum electrodynamics are capable of stopping gravitational collapse. Our discussion is within the framework of Einstein's theory, but on a microscopic level. We conclude that gravitational collapse may be halted without the necessity of extending Einstein's theory à la Cartan or otherwise.  相似文献   

8.
We derive an expression for the effectivegravitational mass for any closed spacelike 2-surface.This effective gravitational energy is defined directlythrough the geometrical quantity of the freely falling 2-surface and thus is well adapted to intuitiveexpectation that the gravitational mass should bedetermined by the motion of a test body moving freely inthe gravitational field. We find that this effective gravitational mass has a reasonable positivevalue for a small sphere in the non-vacuum space-timesand can be negative for the vacuum case. Further, thiseffective gravitational energy is compared with the quasi-local energy based on the (2 + 2)formalism of General Relativity. Although some gaugefreedoms exist, analytic expressions of the quasi-localenergy for vacuum cases are the same as the effective gravitational mass. Especially, we see that thecontribution from the cosmological constant is the samein general cases.  相似文献   

9.
A three-arm Michelson-Fabry-Perot detector for gravitational waves is designed.It consists of three MichelsonFabry-Perot interferometers,one for each pair of arms.The new detector can be used to confirm whether the gravitational waves are in general relativity polarization states and to set the strong constraints on non-GR gravitational wave polarization states.By the new detectors,the angular resolution of sources can be improved significantly.With the new detector,it is easier to search for and confirm a gravitational wave signal in the observation data.  相似文献   

10.
Quantum gauge theory of gravity is formulated based on gauge principle. Because the Lagrangian hasstrict local gravitational gauge symmetry, gravitational gauge theory is a perturbatively renormalizable quantum theory.Gravitational gauge interactions of scalar field are studied in this paper. In quantum gauge theory of gravity, scalar fieldminimal couples to gravitational field through gravitational gauge covariant derivative. Comparing the Lagrangian forscalar field in quantum gauge theory of gravity with the corresponding Lagrangian in quantum fields in curved space-time, the definition for metric in curved space-time in geometry picture of gravity can be obtained, which is expressedby gravitational gauge field. In classical level, the Lagrangian and Hamiltonian approaches are also discussed.  相似文献   

11.
WU Ning 《理论物理通讯》2004,41(4):567-572
In 1992, E.E. Podkletnov and R. Nieminen found that under certain conditions, ceramic superconductor with composite structure reveals weak shielding properties against gravitational force. In classical Newton's theory of gravity and even in Einstein's general theory of gravity, there are no grounds of gravitational shielding effects. But in quantum gauge theory of gravity, the gravitational shielding effects can be explained in a simple and natural way. In quantum gauge theory of gravity, gravitational gauge interactions of complex scalar field can be formulated based on gauge principle. After spontaneous symmetry breaking, if the vacuum of the complex scalar field is not stable and uniform, there will be a mass term of gravitational gauge field. When gravitational gauge field propagates in this unstable vacuum of the complex scalar field, it will decays exponentially, which is the nature of gravitational shielding effects. The mechanism of gravitational shielding effects is studied in this paper, and some main properties of gravitational shielding effects are discussed.  相似文献   

12.
Gravitational shock waves are defined in the framework of space-times with distribution-valued curvature tensors. Then different kinds of motion in the presence of a gravitational shock wave are investigated. In an earlier paper the same investigation was carried out for an ordinary gravitational discontinuity wave. Discontinuity effects due to gravitational shock waves are compared to those due to ordinary waves.  相似文献   

13.
Weak electromagnetic and gravitational fields in a plasma situated in a strong gravitational field, are studied using linearized, general-relativistic, kinetic equations. A tensor operator is constructed for the electrical conductivity of a plasma in a gravitational field, which is a general-relativistic generalization of the electrical conductivity of a homogeneous plasma. Similar tensor operators, which allow one to determine the energy-momentum tensor and the vector current, induced by electromagnetic and gravitational fields in a plasma, are also obtained.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 57–62, September, 1976.  相似文献   

14.
We propose a unified phenomenological theory to investigate the interaction between arbitrarily moving superconductors and gravitational fields including the Newtonian gravity, gravitational waves, vector transverse gravitoelectric fields, and vector gravitomagnetic fields. In the limit of weak field and low velocity, the expressions for the induced electromagnetic and gravitational fields in the interior of a moving superconductor are obtained. The Meissner effect, London moment, DeWitt effect, effects of gravitational wave on a superconductor, and induced electric fields in the interior of a freely vibrating superconductor are recovered from these two expressions. We demonstrate that the weak equivalence principle is valid in superconductivity, that Newtonian gravity and gravitational waves will penetrate either a moving superconductor or a superconductor at rest, and that a superconductor at rest cannot shield either vector gravitomagnetic fields or vector transverse gravitoelectric fields.  相似文献   

15.
《Comptes Rendus Physique》2013,14(4):272-287
In linear approximation to general relativity, gravitational waves can be thought of as perturbation of the background metric that propagate at the speed of light. A time-varying quadrupole of matter distribution causes the emission of gravitational waves. Application of Einsteinʼs quadrupole formula to radio binary pulsars has confirmed the existence of gravitational waves and vindicated general relativity to a phenomenal degree of accuracy. Gravitational radiation is also thought to drive binary supermassive black holes to coalescence – the final chapter in the dynamics of galaxy collisions. Binaries of compact stars (i.e., neutron stars and/or black holes) are expected to be the most luminous sources of gravitational radiation. The goal of this review is to provide a heuristic picture of what gravitational waves are, outline the worldwide effort to detect astronomical sources, describe the basic tools necessary to estimate their amplitudes and discuss potential sources of gravitational waves and their detectability with detectors that are currently being built and planned for the future.  相似文献   

16.
We consider the gravitational effect of quantum wave packets when quantum mechanics, gravity, and thermodynamics are simultaneously considered. Under the assumption of a thermodynamic origin of gravity, we propose a general equation to describe the gravitational effect of quantum wave packets. In the classical limit, this equation agrees with Newton’s law of gravitation. For quantum wave packets, however, it predicts a repulsive gravitational effect. We propose an experimental scheme using superfluid helium to test this repulsive gravitational effect. Our studies show that, with present technology such as superconducting gravimetry and cold atom interferometry, tests of the repulsive gravitational effect for superfluid helium are within experimental reach.  相似文献   

17.
The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.  相似文献   

18.
We present a novel nonlinear mechanism for exciting a gravitational radiation pulse (or a gravitational wave) by dust magnetohydrodynamic (DMHD) waves in dusty astrophysical plasmas. We derive the relevant equations governing the dynamics of nonlinearly coupled DMHD waves and a gravitational wave (GW). The system of equations is used to investigate the generation of a GW by compressional Alfvén waves in a type II supernova. The growth rate of our nonlinear process is estimated, and the results are discussed in the context of the gravitational radiation accompanying supernova explosions.  相似文献   

19.
The problem of the motion of a free particle in a uniform gravitational field is considered. A relativistic solution based on the assumption that the motion is a consequence of the curvature of spacetime is obtained. The results are compared with various results based on the assumption that spacetime is flat in a region in which the gravitational field is uniform. In the curved spacetime approach, if a particle is projected from a point in a uniform gravitational field, the vertical distance covered by the particle in infinite coordinate time is infinite, but the horizontal distance covered and the elapsed proper time of the particle are finite. If spacetime is assumed to be flat and the gravitational motion of a particle a consequence of a relativistic force proportional to the relative mass of the particle, then the results obtained for the motion of a particle in a uniform gravitational field are close to the curved spacetime results. All other assumptions, including the assumption that the motion of a particle in a uniform gravitational field is equivalent to the motion of a particle in a uniformly accelerating frame of reference, lead to results in serious disagreement with the curved spacetime results.  相似文献   

20.
The potential of a static electric charge located in a Schwarzschild gravitational field is given by Linet. The expressions for the field lines derived from this potential are calculated by numerical integration and drawn for different locations of the static charge in the gravitational field. The field lines calculated for a charge located very close to the central mass can be compared to those calculated by Hanni–Ruffini. Maxwell equations are used to analyze the dynamics of the falling electric field in a gravitational field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号