首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Upconverted yellow singlet fluorescence from rubrene (5,6,11,12-tetraphenylnapthacene) was generated from selective excitation (lambdaex = 725 nm) of the red light absorbing triplet sensitizer palladium(II) octabutoxyphthalocyanine, PdPc(OBu)8, in vacuum degassed toluene solutions using a Nd:YAG/OPO laser system in concert with gated iCCD detection. The data are consistent with upconversion proceeding from triplet-triplet annihilation (TTA) of rubrene acceptor molecules. The TTA process was confirmed by the quadratic dependence of the upconverted delayed fluorescence intensity with respect to incident light, measured by integrating the corresponding kinetic traces as a function of the incident excitation power. In vacuum degassed toluene solutions, the red-to-yellow upconversion process is stable under continuous long wavelength irradiation and is readily visualized by the naked eye even at modest laser fluence (0.6 mJ/pulse). In aerated solutions, however, selective excitation of the phthalocyanine sensitizer leads to rapid decomposition of rubrene into its corresponding endoperoxide as evidenced by UV-vis (in toluene), 1H NMR (in d6-benzene), and MALDI-TOF mass spectrometry, consistent with the established reactivity of rubrene with singlet dioxygen. The upconversion process in this triplet sensitizer/acceptor-annihilator combination was preliminarily investigated in solid polymer films composed of a 50:50 mixture of an ethyleneoxide/epichlorohydrin copolymer, P(EO/EP). Films that were prepared under an argon atmosphere and maintained under this inert environment successfully achieve the anticipated quadratic incident power dependence, whereas air exposure causes the film to deviate somewhat from this dependence. To the best of our knowledge, the current study represents the first example of photon upconversion using a phthalocyanine triplet sensitizer, furthering the notion that anti-Stokes light-producing sensitized TTA appears to be a general phenomenon as long as proper energy criteria are met.  相似文献   

2.
The sensitized triplet-triplet annihilation (TTA) of 9,10-dimethylanthracene (DMA) upon selective excitation of [Ru(dmb)3]2+ (dmb = 4,4'-dimethyl-2,2'-bipyridine) at 514.5 nm in dimethylformamide (DMF) resulted in upconverted and downconverted DMA excimer photoluminescence. The triplet excited state of [Ru(dmb)3]2+ is efficiently quenched by 11 mM DMA in DMF resulting in photon upconversion but no excimer formation. The bimolecular quenching constant of the dynamic quenching process is 1.4 x 109 M-1 s-1. At 90 mM DMA, both upconversion and downconversion processes are readily observed in aerated DMF solutions. The TTA process was confirmed by the quadratic dependence of the upconverted and downconverted emission emanating from the entire integrated photoluminescence profile (400-800 nm) of DMA measured with respect to incident light power. Time-resolved emission spectra of [Ru(dmb)3]2+ and 90 mM DMA in both aerated and deaerated DMF clearly illustrates the time-delayed nature of both types of singlet-state emission, which interestingly shows similar decay kinetics on the order of 14 mus. The emission quantum yields (Phi) measured using relative actinometry increased with increasing DMA concentrations, reaching a plateau at 3.0 mM DMA (Phi = 4.0%), while at 90 mM DMA, the overall quantum yield diminished to 0.5%. The dominant process occurring at 3.0 mM DMA is upconversion from the singlet excited state of DMA, whereas at 90 mM DMA, both upconversion and excimeric emission are observed in almost equal portions, thereby resulting in an overall broad-band visible light-emission profile.  相似文献   

3.
The relative magnetic field effects on the total triplet—triplet annihilation (TTA) rate constant, on the rate constant for production of a singlet monomer and on the rate constant for production of a singlet excimer have been measured in a magnetic field range from 0 to 6000 gauss for the hydrocarbons pyrene, 3,4-benzopyrene, 1,2-benzanthracene and phenanthrene in solvents of different polarity between room temperature and 120 K. A qualitative discussion of the experimental results yields the following information on the mechanism of TTA: (i) The ratio of singlet to triplet products decreases with decreasing temperature or increasing viscosity of the solvent. (ii) The magnetic field effect depends much more on viscosity than on temperature. (iii) Singlet monomers and excimers are predominantly formed from different initial triplet—triplet pair configurations. (iv) Ionic radical pair states do not seem to play an important role in the TTA mechanism between equal molecules.  相似文献   

4.
While many studies have been done on triplet–triplet annihilation‐based photon upconversion (TTA‐UC) to produce visible light with high efficiency, the efficient TTA‐UC from visible to UV light, despite its importance for a variety of solar and indoor applications, remains a challenging task. Here, we report the highest visible‐to‐UV TTA‐UC efficiency of 20.5 % based on the discovery of an excellent UV emitter, 1,4‐bis((triisopropylsilyl)ethynyl)naphthalene (TIPS‐Nph). TIPS‐Nph is an acceptor with desirable features of high fluorescence quantum yield and high singlet generation efficiency by TTA. TIPS‐Nph has a low enough triplet energy level to be sensitized by Ir(C6)2(acac), a superior donor that does not quench UV emission. The combination of TIPS‐Nph and Ir(C6)2(acac) realizes the efficient UV light production even with weak light sources such as an AM 1.5 solar simulator and room LEDs.  相似文献   

5.
《Chemical physics》2005,308(1-2):93-102
The absorption and emission spectroscopic behaviour of cyclometalated fac-tris(2-phenylpyridine) iridium(III) [Ir(ppy)3] is studied at room temperature. Liquid solutions, doped films, and neat films are investigated. The absorption cross-section spectra including singlet–triplet absorption, the triplet–singlet stimulated emission cross-section spectra, the phosphorescence quantum distributions, the phosphorescence quantum yields and the phosphorescence signal decays are determined. In neat films fluorescence self-quenching occurs, in diluted solid solution (polystyrene and dicarbazole-biphenyl films) as well as deaerated liquid solution (toluene) high phosphorescence quantum yields are obtained, and in air-saturated liquid solutions (chloroform, toluene, tetrahydrofuran) the phosphorescence efficiency is reduced by triplet oxygen quenching. At intense short-pulse laser excitation the phosphorescence lifetime is shortened by triplet–triplet annihilation. No amplification of spontaneous emission in the phosphorescence spectral region was observed indicating higher excited-state absorption than stimulated emission.  相似文献   

6.
Reversible emission color switching of triplet–triplet annihilation‐based photon upconversion (TTA‐UC) is achieved by employing an Os complex sensitizer with singlet‐to‐triplet (S‐T) absorption and an asymmetric luminescent cyclophane with switchable emission characteristics. The cyclophane contains the 9,10‐bis(phenylethynyl)anthracene unit as an emitter and can assemble into two different structures, a stable crystalline phase and a metastable supercooled nematic phase. The two structures exhibit green and yellow fluorescence, respectively, and can be accessed by distinct heating/cooling sequences. The hybridization of the cyclophane with the Os complex allows near‐infrared‐to‐visible TTA‐UC. The large anti‐Stokes shift is possible by the direct S‐T excitation, which dispenses with the use of a conventional sequence of singlet–singlet absorption and intersystem crossing. The TTA‐UC emission color is successfully switched between green and yellow by thermal stimulation.  相似文献   

7.
Intermoiety electronic interactions in the singlet and triplet excimer states of triply bridged [3.3.n](3,6,9)carbazolophanes ([3.3.n]Cz, n=3-6) were studied by emission and transient absorption measurements. In these [3.3.n]Cz molecules, the dihedral angle and the separation distance r between fully overlapped two carbazole rings change systematically from nearly parallel (n=3, r=3.35 A) to oblique (n=6, r=4.03 A). In rigid glass at 77 K, [3.3.n]Cz (n=3, 4) (r<4 A) exhibited red-shifted and structureless excimer fluorescence and phosphorescence while [3.3.n]Cz (n=5, 6) (r>4 A) exhibited monomer-like vibrational fluorescence and phosphorescence. In solution at 130 K, all [3.3.n]Cz molecules exhibited an excimeric fluorescence band while [3.3.5]Cz still exhibited monomer-like phosphorescence. Transient absorption spectra measured at 294 K exhibited local excitation and charge-transfer bands for all [3.3.n]Cz molecules in the excited singlet and triplet states, suggesting that not only singlet but also triplet excimers of carbazole are formed at room temperature. Furthermore, the singlet-triplet energy gap decreased with the decrease in n, suggesting that electrons are effectively delocalized over the two carbazole moieties. These findings showed that both singlet and triplet excimers of carbazole are formed with a separation distance shorter than about 4 A and are most stable in the parallel-sandwich structure and that the configurational mixing between exciton resonance and charge resonance states plays an essential role in the formation of singlet and triplet excimers of carbazole.  相似文献   

8.
Electrochemiluminescence (ECL) from tris(2‐phenylpyridine)irdium [Ir(ppy)3] was investigated following cross reaction of its anion with oxidized poly(N‐vinyl‐carbazole) (PVK) and its cation with reduced 2‐(4‐biphenylyl)‐5‐(4‐tert‐butyl‐phenyl)‐1,3,4‐oxadiazole (PBD). Both cross reactions show Ir(ppy)3 emission and the cross reaction of PVK/Ir(ppy)3 showed the highest ECL intensity. The comparisons of the reaction enthalpy and the energy of Ir(ppy)3 light emitting shows that reaction between PVK and Ir(ppy)3 is energy sufficient to populate metal‐to‐ligand charge transfer (MLCT) excited singlet (3.04 eV) of Ir(ppy)3, while the reaction between Ir(ppy)+3 and PBD− · is energy efficient to populate MLCT excited triplet (2.4 eV). The ECL result in solution reveals that the energy released from charge transfer between the Ir(ppy)3 and PVK or PBD is sufficient to produce the excited state of Ir(ppy)3 in solid polymer light‐emitting diodes (PLEDs) based on PVK:PBD hosts doped by Ir(ppy)3. These results obtained will provide further insight into charge‐transfer excitation in PLEDs.  相似文献   

9.
“Chemistry‐on‐the‐complex” synthetic methods have allowed the selective addition of 1‐ethynylpyrene appendages to the 3‐, 5‐, 3,8‐ and 5,6‐positions of IrIII‐coordinated 1,10‐phenanthroline via Sonogashira cross‐coupling. The resulting suite of complexes has given rise to the first rationalization of their absorption and emission properties as a function of the number and position of the pyrene moieties. Strong absorption in the visible region (e.g. 3,8‐substituted Ir‐3 : λabs=481 nm, ?=52 400 m ?1 cm?1) and long‐lived triplet excited states (e.g. 5‐substituted Ir‐2 : τT=367.7 μs) were observed for the complexes in deaerated CH2Cl2. On testing the series as triplet sensitizers for triplet–triplet annihilation upconversion, those IrIII complexes bearing pyrenyl appendages at the 3‐ and 3,8‐positions ( Ir‐1 , Ir‐3 ) were found to give optimal upconversion quantum yields (30.2 % and 31.6 % respectively).  相似文献   

10.
Aggregation‐induced photon upconversion (iPUC) based on control of the triplet energy landscape is demonstrated for the first time. When a triplet state of a cyano‐substituted 1,4‐distyrylbenzene derivative is sensitized in solution, no upconverted emission based on triplet–triplet annihilation (TTA) was observed. In stark contrast, crystalline solids obtained by drying the solution revealed clear upconverted emission. Theoretical studies unveiled an underlying switching mechanism: the excited triplets in solution immediately decay back to the ground state through conformational twisting around a C?C bond and photoisomerization, whereas this deactivation path is effectively inhibited in the solid state. The finding of iPUC phenomena highlights the importance of controlling excited energy landscapes in condensed molecular systems.  相似文献   

11.
Selective low energy excitation of the metal-to-ligand charge transfer (MLCT) transition in [Ru(dmb)(3)](2+)(dmb = 4,4'-dimethyl-2,2'-bipyridine) in the presence of anthracene or 9,10-diphenylanthracene yields easily visualized upconverted singlet fluorescence resulting from triplet-triplet annihilation at low excitation power.  相似文献   

12.
Cyclometalated IrIII complexes with acetylide ppy and bpy ligands were prepared (ppy=2‐phenylpyridine, bpy=2,2′‐bipyridine) in which naphthal ( Ir‐2 ) and naphthalimide (NI) were attached onto the ppy ( Ir‐3 ) and bpy ligands ( Ir‐4 ) through acetylide bonds. [Ir(ppy)3] ( Ir‐1 ) was also prepared as a model complex. Room‐temperature phosphorescence was observed for the complexes; both neutral and cationic complexes Ir‐3 and Ir‐4 showed strong absorption in the visible range (ε=39600 M ?1 cm?1 at 402 nm and ε=25100 M ?1 cm?1 at 404 nm, respectively), long‐lived triplet excited states (τT=9.30 μs and 16.45 μs) and room‐temperature red emission (λem=640 nm, Φp=1.4 % and λem=627 nm, Φp=0.3 %; cf. Ir‐1 : ε=16600 M ?1 cm?1 at 382 nm, τem=1.16 μs, Φp=72.6 %). Ir‐3 was strongly phosphorescent in non‐polar solvent (i.e., toluene), but the emission was completely quenched in polar solvents (MeCN). Ir‐4 gave an opposite response to the solvent polarity, that is, stronger phosphorescence in polar solvents than in non‐polar solvents. Emission of Ir‐1 and Ir‐2 was not solvent‐polarity‐dependent. The T1 excited states of Ir‐2 , Ir‐3 , and Ir‐4 were identified as mainly intraligand triplet excited states (3IL) by their small thermally induced Stokes shifts (ΔEs), nanosecond time‐resolved transient difference absorption spectroscopy, and spin‐density analysis. The complexes were used as triplet photosensitizers for triplet‐triplet annihilation (TTA) upconversion and quantum yields of 7.1 % and 14.4 % were observed for Ir‐2 and Ir‐3 , respectively, whereas the upconversion was negligible for Ir‐1 and Ir‐4 . These results will be useful for designing visible‐light‐harvesting transition‐metal complexes and for their applications as triplet photosensitizers for photocatalysis, photovoltaics, TTA upconversion, etc.  相似文献   

13.
Abstract— The thermal generation of singlet and triplet excited states from silyloxyaryl-substituted spiroadamantyl dioxetanes lab and the adamantylidineadamantane dioxetane (1c) was investigated by direct and enhanced chemiluminescence (CL). 9,10-Diphenylanthracene (DPA) and 9-fluorenone were used as energy acceptors in the singlet-singlet (S-S), naphthalene and europium chelate Eu(TTA)3Phen (TTA = thenoyltrifluoroacetone, Phen = 1,10-phenanthroline) in the triplet-triplet (T-T) and 9,10-di-bromoanthracene (DBA) in triplet-singlet (T-S) energy transfer experiments. The direct chemiluminescence observed in the thermolysis of dioxetanes lab consisted of fluorescence derived from the singlet-excited adamantanones 2a,b. In the presence of naphthalene, selective T-S energy transfer with DBA (napthalene as quencher) displayed the adamantanone triplets 2a,b and with Eu(TTA)3Phen (naphthalene as mediator) also the silyloxyaryl ester 3 triplets. From the Stern-Volmer constants (kTNTT0) the triplet lifetimes t0t of these triplet state products were assessed. By using the Hastings-Weber standard, the total triplet excitation yield (φt) was estimated to be ca 20%. The energies of the first excited singlet and triplet states of the adamantanones 2a,b and the silyloxyaryl ester 3, the products of the thermally induced decomposition of dioxetanes la-c , were determined by semiempirical calculations (AMI-based configuration interaction), which included explicitly solvent effects on the excitation energies in terms of a self-consistent reaction field approach. The calculations revealed that the first excited singlet and triplet states of the adamantanones 2a,b are expectedly n,π*-type excitations while the silyloxyaryl ester 3 possesses π,π* character. The semiempirical computations suggest that excitation of the adamantanones 2a,b as well as the silyloxyaryl ester 3 is feasible in the thermolysis of the spiroadamantyl dioxetanes lab , which has been confirmed by the experimental energy transfer studies.  相似文献   

14.
Ultrafast luminescence spectroscopy has been undertaken on three iridium cored phosphorescent complexes, with the Ir(ppy)3 molecule being compared with two Ir(ppy)3 cored dendrimers. Energy dissipation by intramolecular vibrational redistribution (IVR) and cooling shows as a luminescence decay because it decreases the admixture of singlet character to the emitting triplet state. A larger amount of vibrational energy dissipates by IVR in dendrimer complexes. We have therefore found a methodology of obtaining unambiguous information on the IVR process and show its potential to study IVR rates as a function of vibrational energy.  相似文献   

15.
Naphthalenediimide (NDI) derivatives with 2,6- or 2,3,6,7-tetrabromo or amino substituents were prepared. N,N'-dialkyl-2,6-dibromo NDI (compound 2) and N,N'-dialkyl-2,3,6,7-tetrabromo NDI (compound 4) show phosphorescence emission at 610 or 667 nm, respectively. Phosphorescence was never observed for NDI derivatives. Conversely, N,N'-dialkyl-2,6-dibromo-3,7-diamino NDI (compound 5) shows strong absorption at 526 nm and fluorescence at 551 nm, and no phosphorescence was observed. However, nanosecond time-resolved transient difference absorption spectroscopy confirmed that the triplet excited state of 5 was populated upon photoexcitation. 2,3,6,7-Tetraamino NDI (6) shows fluorescence, and no triplet excited state was populated upon excitation. The compounds were used as singlet oxygen ((1)O(2)) photosensitizers for the photooxidation of 1,5-dihydroxylnaphthalene (DHN). We found that 5 is more efficient than the conventional photosensitizer, such as Ir(ppy)(2)(bpy)[PF(6)]. The compounds were also used as organic triplet photosensitizers for triplet-triplet annihilation based upconversions. An upconversion quantum yield up to 18.5% was observed.  相似文献   

16.
Cyclometalated Ir(III) complexes with acetylide ppy and bpy ligands were prepared (ppy = 2-phenylpyridine, bpy = 2,2'-bipyridine) in which naphthal (Ir-2) and naphthalimide (NI) were attached onto the ppy (Ir-3) and bpy ligands (Ir-4) through acetylide bonds. [Ir(ppy)(3)] (Ir-1) was also prepared as a model complex. Room-temperature phosphorescence was observed for the complexes; both neutral and cationic complexes Ir-3 and Ir-4 showed strong absorption in the visible range (ε=39,600 M(-1) cm(-1) at 402?nm and ε=25,100 M(-1) cm(-1) at 404?nm, respectively), long-lived triplet excited states (τ(T)=9.30?μs and 16.45?μs) and room-temperature red emission (λ(em)=640?nm, Φ(p)=1.4?% and λ(em)=627?nm, Φ(p)=0.3?%; cf. Ir-1: ε=16,600 M(-1) cm(-1) at 382?nm, τ(em)=1.16 μs, Φ(p)=72.6?%). Ir-3 was strongly phosphorescent in non-polar solvent (i.e., toluene), but the emission was completely quenched in polar solvents (MeCN). Ir-4 gave an opposite response to the solvent polarity, that is, stronger phosphorescence in polar solvents than in non-polar solvents. Emission of Ir-1 and Ir-2 was not solvent-polarity-dependent. The T(1) excited states of Ir-2, Ir-3, and Ir-4 were identified as mainly intraligand triplet excited states ((3)IL) by their small thermally induced Stokes shifts (ΔE(s)), nanosecond time-resolved transient difference absorption spectroscopy, and spin-density analysis. The complexes were used as triplet photosensitizers for triplet-triplet annihilation (TTA) upconversion and quantum yields of 7.1?% and 14.4?% were observed for Ir-2 and Ir-3, respectively, whereas the upconversion was negligible for Ir-1 and Ir-4. These results will be useful for designing visible-light-harvesting transition-metal complexes and for their applications as triplet photosensitizers for photocatalysis, photovoltaics, TTA upconversion, etc.  相似文献   

17.
We report the synthesis, characterisation, photophysical and electrochemical properties of a series of cationic cyclometallated Ir(III) complexes of general formula [Ir(ppy)(2)(phen)]PF(6) (ppy=2-phenylpyridine, phen=a substituted phenanthroline). A feature of these complexes is that the phen ligands are substituted with one or two 9,9-dihexylfluorenyl substituents to provide extended pi conjugation, for example, the 3-[2-(9,9-dihexylfluorenyl)]phenanthroline and 3,8-bis[2-(9,9-dihexylfluorenyl)]phenanthroline ligands afford complexes 6 and 9, respectively. A single-crystal X-ray diffraction study of a related complex 18 containing the 3,8-bis(4-iodophenyl)phenanthroline ligand, revealed an octahedral coordination of the Ir atom, in which the metallated C atoms of the ppy ligands occupy cis positions. The complexes 6 and 9 displayed reversible oxidation waves in cyclic voltammetric studies (E(ox)(1/2)=+1.18 and +1.20 V, respectively, versus Ag/Ag(+) in CH(2)Cl(2)) assigned to the metal-centred Ir(III)/Ir(IV) couple. The complexes exhibit strong absorption in the UV region in solution spectra, due to spin-allowed ligand-centred (LC) (1)pi-pi* transitions; moderately intense bands occur at approximately 360-390 nm which are red-shifted with increased ligand length. The photoluminescence spectra of all the complexes were characterised by a broad band at lambda(max) approximately 595 nm assigned to a combination of (3)MLCT and (3)pi-->pi* states. The long emission lifetimes (in the microsecond time-scale) are indicative of phosphorescence: the increased ligand conjugation length in complexes 9 and 17 leads to increased lifetimes for the complexes (tau=2.56 and 2.57 micros in MeCN, respectively) compared to monofluorenyl analogues 6 and 15 (tau=1.43 and 1.39 micros, respectively). DFT calculations of the geometries and electronic structures of complexes 6', 9' (for both singlet ground state (S(0)) and triplet first excited (T(1)) states) and 18 have been performed. In the singlet ground state (S(0)) HOMO orbitals in the complexes are spread between the Ir atom and benzene rings of the phenylpyridine ligand, whereas the LUMO is mainly located on the phenanthroline ligand. Analysis of orbital localisations for the first excited (T(1)) state have been performed and compared with spectroscopic data. Spin-coated light-emitting cells (LECs) have been fabricated with the device structures ITO/PEDOT:PSS/Ir complex/Al, or Ba capped with Al (ITO=indium tin oxide, PEDOT=poly(3,4-ethylenedioxythiophene), PSS=poly(styrene) sulfonate). A maximum brightness efficiency of 9 cd A(-1) has been attained at a bias of 9 V for 17 with a Ba/Al cathode. The devices operated in air with no reduction in efficiency after storage for one week in air.  相似文献   

18.
Solution-processible conjugated electrophosphorescent polymers   总被引:4,自引:0,他引:4  
We report the synthesis and photophysical study of a series of solution-processible phosphorescent iridium complexes. These comprise bis-cyclometalated iridium units [Ir(ppy)(2)(acac)] or [Ir(btp)(2)(acac)] where ppy is 2-phenylpyridinato, btp is 2-(2'-benzo[b]thienyl)pyridinato, and acac is acetylacetonate. The iridium units are covalently attached to and in conjugation with oligo(9,9-dioctylfluorenyl-2,7-diyl) [(FO)(n)] to form complexes [Ir(ppy-(FO)(n))(2)(acac)] or [Ir(btp-(FO)(n))(2)(acac)], where the number of fluorene units, n, is 1, 2, 3, approximately 10, approximately 20, approximately 30, or approximately 40. All the complexes exhibit emission from a mixed triplet state in both photoluminescence and electroluminescence, with efficient quenching of the fluorene singlet emission. Short-chain complexes, 11-13, [Ir(ppy-(FO)(n)-FH)(2)(acac)] where n = 0, 1, or 2, show green light emission, red-shifted through the FO attachment by about 70 meV, but for longer chains there is quenching because of the lower energy triplet state associated with polyfluorene. In contrast, polymer complexes 18-21 [Ir(btp-(FO)(n))(2)(acac)] where n is 5-40 have better triplet energy level matching and can be used to provide efficient red phosphorescent polymer light-emitting diodes, with a red shift due to the fluorene attachment of about 50 meV. We contrast this small (50-70 meV) and short-range modification of the triplet energies through extended conjugation, with the much more substantial evolution of the pi-pi* singlet transitions, which saturate at about n = 10. These covalently bound materials show improvements in efficiency over simple blends and will form the basis of future investigations into energy-transfer processes occurring in light-emitting diodes.  相似文献   

19.
In this report we describe the synthesis of multichromophore arrays consisting of two Bodipy units axially bound to a Sn(IV) porphyrin center either via a phenolate (3) or via a carboxylate (6) functionality. Absorption spectra and electrochemical studies show that the Bodipy and porphyrin chromophores interact weakly in the ground state. However, steady-state emission and excitation spectra at room temperature reveal that fluorescence from both the Bodipy and the porphyrin of 3 are strongly quenched suggesting that, in the excited state, energy and/or electron transfer might occur. Indeed, as transient absorption experiments show, selective excitation of Bodipy in 3 results in a rapid decay (τ ≈ 2 ps) of the Bodipy-based singlet excited state and a concomitant rise of a charge-separated state evolving from the porphyrin-based singlet excited state. In contrast, room-temperature emission studies on 6 show strong quenching of the Bodipy-based fluorescence leading to sensitized emission from the porphyrin moiety due to a transduction of the singlet excited state energy from Bodipy to the porphyrin. Emission experiments at 77 K in frozen toluene reveal that the room-temperature electron transfer pathway observed in 3 is suppressed. Instead, Bodipy excitation in 3 and 6 results in population of the first singlet excited state of the porphyrin chromophore. Subsequently, intersystem crossing leads to the porphyrin-based triplet excited state.  相似文献   

20.
Substituted naphthylacrylates, 1-3, not showing rotamerism have been synthesized with a view to study photochemical E (trans)-->Z (cis) isomerization. Photostationary state composition of the isomers upon direct excitation, triplet sensitized isomerization, quantum yield of isomerization, and steady state and time-resolved fluorescence behavior have been studied for these naphthylacrylates. The direct excitations of the compounds yield high Z (approximately 80%) isomer composition, whereas the triplet sensitization results in less Z (approximately 20%) isomer composition. This indicates that the singlet pathway is very efficient in converting the E isomer to the Z isomer. The naphthylacrylates 1 and 2 exhibit structured fluorescence at room temperature in hexane and upon changing the solvent to CH3CN; the structure of the fluorescence is lost, indicating that the singlet excited-state develops a polar character in a polar environment. The polar nature of the singlet excited state becomes more clear in the case of 3 from its fluorescence solvatochromism. The naphthylacrylates did not exhibit excitation wavelength-dependent fluorescence at room temperature suggesting that the ground state conformers (rotamers) are not involved. Fluorescence lifetimes measured for these compounds displayed biexponential behavior, which is explained using a two-state model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号