首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonlinear effect at small strains (Payne effect) has been investigated in the case of silica‐filled styrene‐butadiene rubber. The originality of this study lies in the careful preparation of samples in order to fix all parameters except one, that is, the modification of the silica surface by grafting silane (introduced at different concentrations) via reactive mixing. The organosilane can be either a coupling or a covering surface treatment with an octyl alkyl chain. A careful morphological investigation has been performed prior to mechanical characterization and silica dispersion was found to be the same whatever the type and the amount of silane. The increasing amount of covering agents was found to reduce the amplitude of the Payne effect. A similar decrease is observed for low coupling agent concentration. At higher concentrations, the evolution turns through an increase due to the contribution of the covalent bonds between the matrix and the silica acting as additional crosslinking. The discussion of the initial modulus was done in the frame of both the filler–filler and filler–polymer models. It is unfortunately not possible to distinguish both scenarios, because filler–filler and filler–matrix interactions are modified in the same manner by the grafting covering agent. On the other hand, the reversible decrease of the modulus versus strain (Payne effect) is interpreted in terms of debonding of the polymeric chains from the filler surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 286–298, 2007  相似文献   

2.
Small-angle neutron scattering (SANS) studies of aqueous dispersions of St?ber silica particles (which have been hydrophobised by having 1-octadecanol grafted to their surface), carrying an adsorbed layer of the nonionic surfactant C12E24, in water, have been performed as a function of temperature. Using mixtures of D2O and H2O, the composition of the continuous phase was adjusted to have the same scattering length density as the silica particles. Hence, only the scattering from the 1-octadecanol and C12E24 layers was detected. The data have been analyzed using both a surface Guinier analysis and a two-layer structure model. It has been found that a step profile best describes the inner combined adsorbed layer (1-octadecanol grafted chains, plus the penetrating alkyl chains from the surfactant) and a semi-Gaussian profile the extended poly(ethylene oxide) outer layer. Both analyses demonstrated that the combined surface layer contracted with increasing temperature.  相似文献   

3.
A series of well‐defined amphiphilic comb poly (ether amine)s (acPEAs) were successfully synthesized through nucleophilic addition/ring‐opening reaction of commercial available poly(propylene glycol) (PPO) diglycidyl ether and Jeffamine L100, followed by esterification of hydroxyl groups in backbone by alkyl carboxylic acid with different chain length. acPEAs are comprised of hydrophilic short PEO chains and hydrophobic alkyl chains as comb chains, which are grafted on PPO backbone alternately to form well‐defined structure. With the very low critical micelle concentration (CMC) of around 3.0 × 10?3 g/L, the obtained acPEAs can self‐assemble into stable nanomicelles, whose aggregation is responsive to temperature, pH, and ionic strength with tunable cloud point (CP). The CP of acPEAs' aqueous solution increases with the decrease of the length of graft alkyl chains, the decrease of pH value, and the decrease of ionic strength. A transition behavior in the responsive aggregation of micelles formed by acPEA8 and acPEA10 in aqueous solution, especially at low pH value (<7.0), was observed, which was also revealed by DLS results. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3468–3475, 2010  相似文献   

4.
The structure of micelles formed by nonionic polyoxyethylene alkyl ether nonionic surfactants, C n E m , in the room-temperature ionic liquid, ethylammonium nitrate (EAN), has been determined by small-angle neutron scattering (SANS) as a function of alkyl and ethoxy chain length, concentration, and temperature. Micelles are found to form for all alkyl chains from dodecyl through to octadecyl. Dodecyl-chained surfactants have high critical micelle concentrations, around 1 wt%, and form weakly structured micelles. Surfactants with longer alkyl chains readily form micelles in EAN. The observed micelle structure changes systematically with alkyl and ethoxy chain length, in parallel with observations in aqueous solutions. Decreasing ethoxy chain length at constant alkyl chain length leads to a sphere to rod transition. These micelles also grow into rods with increasing temperature as their cloud point is approached in EAN.  相似文献   

5.
Polymer modification through silane grafting and its subsequent crosslinking allows the rheological properties of a polymer to be tuned from those of a viscous melt to those of a crosslinked elastic network. In this study, a metallocene polyolefin resin is grafted with vinyl trimethoxy silane (VTMS) using dicumyl peroxide (DCP) as the initiator and is subsequently crosslinked in an oxidative environment. Dynamic rheological experiments are conducted to elucidate the effects of DCP and VTMS concentrations on the grafting and ensuing crosslinking processes. We find that the addition of VTMS alone to the polymer produces no grafting. In contrast, the presence of DCP by itself leads to direct crosslinking between polymer chains as suggested by an increase in elastic modulus and complex viscosity. Samples containing both DCP and VTMS undergo silane grafting, with the extent of grafting increasing with increasing DCP concentration. This conclusion is borne out by both rheological and Fourier transform infrared measurements. The grafted samples undergo silane crosslinking only in an oxidative environment and at temperatures equal to or greater than 190 °C. During crosslinking, the samples undergo a transition from a viscous melt with frequency‐dependent moduli to a gel exhibiting frequency‐independent moduli with the elastic modulus exceeding the viscous modulus. However, the kinetics of crosslinking and the extent of the modulus increase are a function of the DCP concentration, with both exhibiting a maximum at a specific DCP and VTMS combination. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2468–2479, 2000  相似文献   

6.
Summary A fumed silica surface was systematically modified by the grafting of n-alkyl chains with increasing carbon numbers. The samples were characterized by the dispersive component of the surface energy, their specific interaction potential and enthalpies of adsorption of polar, in particular, alcohol probes. It is shown that the variation of the surface properties and adsorption capacities depend on the chain length of the graft. For instance, minimum values are recorded when the surface coverage by methylene groups corresponds either to one or two CH2 surface layers. This behaviour is related to the mobility of the grafted alkyl chains, mobility which was examined by solid state NMR.  相似文献   

7.
We have prepared various poly(N-isopropylacrylamide) (PIPAAm)-grafted silica bead surfaces through surface-initiated atom transfer radical polymerization (ATRP) by changing graft densities and brush chain lengths. The prepared surfaces were characterized by chromatographic analysis using the modified silica beads as chromatographic stationary phases. ATRP initiator (2-(m,p-chloromethylphenyl)ethyltrichlorosilane) density on silica bead surfaces was modulated by changing the feed composition of the self-assembled monolayers (SAMs) of mixed silane coupling agents consisting of ATRP initiator and phenethyltrichlorosilane on the surfaces. IPAAm was then polymerized on SAM-modified silica bead surfaces by ATRP in 2-propanol at 25 degrees C. The chain length of the grafted PIPAAm was controlled by simply changing the ATRP reaction time at constant catalyst concentration. The thermoresponsive surface properties of the PIPAAm-grafted silica beads were investigated by temperature-dependent elution behavior of hydrophobic steroids from the surfaces using Milli-Q water as a mobile phase. On the surfaces grafted with shorter PIPAAm chains, longer retention times for steroids were observed on sparsely grafted PIPAAm surfaces compared to dense PIPAAm brushes at low temperature, because of hydrophobic interactions between the exposed phenethyl groups of SAMs on silica surfaces and steroid molecules. Retention times for steroids on dilute PIPAAm chain columns decreased with temperature similarly to conventional reverse-phase chromatographic modes on octadecyl columns. This effect was due to limited interaction of solutes with the PIPAAm-grafted surfaces. Retention times for steroids on dilute PIPAAm brush surfaces with longer PIPAAm chains became greater above the PIPAAm transition temperature. At low-temperature regions, hydrated and expanded PIPAAm at low temperatures prevented hydrophobic interactions between the phenethyl group of SAMs on the silica bead surfaces and steroid molecules. Retention times for steroids on a dense PIPAAm brush column increased with temperature since solvated polymer segments within the dense brush layer undergo dehydration over a broad range of temperatures. In conclusion, PIPAAm graft density has a crucial influence on the elution behavior of steroids because of the interaction of analytes with silica bead interfaces, and because of the characteristic dehydration of PIPAAm in dense-pack brush surfaces.  相似文献   

8.
Particle monolayer formation at the air–water interface by polymer‐grafted colloidal silica was investigated. Methyl methacrylate (MMA) was polymerized from initiative bromide groups at colloidal silica surface by atom transfer radical polymerization. We obtained polymer‐grafted silica particle (SiO2‐PMMA) with relative narrow polydispersity of PMMA. For the polymer‐grafted particle with high graft density, particle monolayer formation was confirmed by π‐A isotherm measurement and SEM observation. Interparticle distance was controllable by surface pressure. Furthermore, grafted polymer chains were suggested to be fairly extended at the air–water interface. However, for the polymer‐grafted particle with low graft density, monolayer structure on substrate showed aggregation and voids. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2789–2797, 2006  相似文献   

9.
水性纳米硅溶胶的表面改性及其应用研究   总被引:1,自引:0,他引:1  
将几种功能性有机硅烷偶联剂与不同pH值的无机纳米硅溶胶水溶液通过表面改性反应和溶胶-凝胶技术制备出水分散纳米杂化改性硅溶胶,并用透射电镜TEM和红外光谱FT-IR对其进行表征和分析,研究了硅烷偶联剂碳链长度及偶联剂用量、溶液pH值对改性硅溶胶稳定性的影响,初步探讨了其在水性涂料、水性纳米罩光防污涂料及砂浆防水中的性能和应用。  相似文献   

10.
New thermoresponsive polymers based on poly(N‐(N′‐alkylcarbamido)propyl methacrylamide) analogues were designed with increased hydrophobic content to facilitate temperature‐dependent chromatographic separations of peptides and proteins from aqueous mobile phases. These polymer solution exhibited a lower critical solution temperature (LCST) when the alkyl group is methyl, ethyl, isopropyl, propyl, butyl, and isobutyl. However, larger alkyl groups such as hexyl and phenyl were not soluble in aqueous solutions at any temperature. Phase transition temperatures were lower for larger alkyl groups and increased with decreasing polymer molecular weight and concentration in solution. LCST dependence on polymer molecular weight and concentration is more significant compared with well‐studied poly(N‐isopropylacrylamide) (PIPAAm). Partition coefficient (log P) values for N‐(N′‐butylcarbamide)propylmethacrylamide and N‐(N′‐isobutylcarbamide)propyl methacrylamide (iBuCPMA) monomers are larger than that for IPAAm monomer, suggesting higher hydrophobicity than IPAAm. Chromatographic evaluation of poly(N‐(N′‐isobutylcarbamide)propyl methacrylamide) (PiBuCPMA) grafted silica particles in aqueous separations revealed larger k′ values for peptides, insulin, insulin chain B, and angiotensin I than PIPAAm‐grafted silica beads. In particular, k′ values for insulin obtained from PiBuCPMA‐grafted silica separations were much larger than those from PIPAAm‐grafted surface separations, indicating that PiBuCPMA should be more hydrophobic than PIPAAm. These results support the introduction of alkylcarbamido groups to efficiently increase thermoresponsive polymer hydrophobicity of poly(N‐alkylacrylamides) and poly(N‐alkylmethacrylamides). Consequently, poly(N‐(N′‐alkylcarbamido)propyl methacrylamide) analogues such as PiBuCPMA and poly(N‐(N′‐alkylcarbamido)alkylmehacrylamide) are new thermoresponsive polymers with appropriate hydrophobic partitioning properties for protein and peptide separations in aqueous media, depending on selection of their alkyl groups. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5471–5482, 2008  相似文献   

11.
Silica gels modified with n-alkyl chains (n = 18, 30) are prepared by two different synthetic routes and are examined by variable temperature FTIR and solid-state NMR spectroscopy. HPLC measurements of SRM 869, cis/trans ss-carotene isomers and xanthophylls isomers confirm the dependence of the separation mechanism on the alkyl chain length and the synthetic routes. The determination of the silane functionality and degree of cross-linking of silane ligands on the silica surface is achieved by 29Si CP/MAS NMR measurements. The structural order and mobility of the alkyl chains are investigated by means of variable temperature 13C CP/MAS NMR measurements. Variable temperature FTIR studies are performed where conformational order and flexibility of the alkyl chains in C18 and C30 phases are monitored through conformational sensitive CH2 symmetric, anti-symmetric stretching and wagging modes. In addition, the chromatographic properties of the C18 and C30 phases are determined. The results derived from the FTIR, NMR and HPLC measurements are discussed in the context of the applied synthetic routes and alkyl chain lengths.  相似文献   

12.
The free‐radical cotelomerization of 3‐(trimethoxysilyl)propyl methacrylate (TMSPMA) with 1,1,2,2‐tetrahydroperfluorodecyl acrylate (PFDA) in the presence of 2‐mercaptoethanol was performed at 80 °C in acetonitrile. Hydroxy end‐groups of the cotelomers were reacted with 2‐isocyanatoethyl methacrylate to give macromonomers. The P(TMSPMA‐stat‐PFDA) cotelomers, containing fluoro and silane groups, were then grafted onto silica nanoparticles. Optimal grafting conditions were found with TMSPMA monomer alone in toluene at 110 °C. The structure of the modified silica was analyzed by FTIR and 29Si solid‐state NMR. The amount of grafted TMSPMA or P(TMSPMA‐stat‐PFDA) was calculated by thermogravimetric and elemental analyzes. The grafting yield increased with the copolymer/silica weight ratio until a maximum value of 2.26 μmol/m2. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4617–4628, 2009  相似文献   

13.
It has been demonstrated that peroxide‐initiated grafting of vinylsilanes to polyethylene results in a nonuniform distribution of silane groups on the polymer chain due to a chain‐transfer mechanism, leading to inefficient utilization of silane with respect to gel fraction in a crosslinked material. In this article, we demonstrate that grafting a nitroxyl free radical that contains a silane functional group gives a more uniform distribution of silane functionality. Model compounds were synthesized by grafting a silane‐functionalized TEMPO derivative and a vinylsilane to cyclooctane, and their structures were compared. The product grafted with vinyltriethoxysilane consisted of essentially all multigrafted product with an average of 2.26 silane grafts per cyclooctane molecule, which is in close agreement with published data, while the product of grafting the silane‐functional nitroxyl consisted of only the monografted species; no multigrafted product was detected. This confirms that grafting a silane‐functionalized nitroxyl occurs via bimolecular combination of free radicals that is not affected by chain‐transfer and suggests that the process may lead to more efficient utilization of silane as indicated by higher gel fraction for a given level of grafted silane. Synthetic work to prepare silane‐functionalized TEMPO derivatives and preliminary studies to graft them to polyolefins are discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4542–4555, 2008  相似文献   

14.
The preparation of water repellent textiles by coating with different modified silica sols has been investigated. For this, pure and with 3-glycidoxypropyl triethoxysilane co-condensed silica sols were modified by three types of additives: alkyltrialkoxysilanes, polysiloxane derivatives and a fluorine containing silane. Hydrophobic properties of the coated fabrics of polyamide and of polyester mixed with cotton were determined using contact angle measurements. The hydrophobicity increases with increasing concentration of the alkylsilane additive in the silica sol and the length of the alkyl chain but with high additive concentrations plateau values in hydrophobicity were reached. Analogously textile coatings with high hydrophobicity were gained using hydrophobic polysiloxane or fluorine containing silicon compounds. The comparison of the different variants reveals that high wash-out stabilities were reached only by silica sols containing fluorine compoundsand hexadecylsilane additives. Therefore long-chain alkyltrialkoxysilane compounds could be used as substitutes for fluorine compounds for the surface modification of textiles in some practical applications.  相似文献   

15.
The effect of alkyl chain length on adsorbent pore volume and void volume of HPLC columns is described. The results provide evidence that alkyl chains attached on silica surface are densely packed. A correlation of a decrease of pore volume with an increase of the alkyl modifier chain length was found. Effective molecular volume of bonded chains was found to be similar to the molecular volume of corresponding liquid alkanes. An absence of noticeable penetration of acetonitrile, methanol, or tetrahydrofuran molecules between bonded chains at any water-organic eluent composition was found.  相似文献   

16.
Several novel aromatic ketone‐based two‐photon initiators containing triple bonds and dialkylamino groups were synthesized and the structure‐activity relationships were evaluated. Branched alkyl chains were used at the terminal donor groups to improve the solubility in the multifunctional monomers. Because of the long conjugation length and good coplanarity, the evaluated initiators showed large two‐photon cross section values, while their fluorescence lifetimes and quantum yields strongly depend on the solvent polarity. All novel initiators exhibited high activity in terms of two‐photon‐induced microfabrication. This is especially true for fluorenone‐based derivatives, which displayed much broader processing windows than well‐known highly active initiators from the literature and commercially available initiators. While the new photoinitiators gave high reactivity in two‐photon‐induced photopolymerization at concentration as low as 0.1% wt, these compounds are surprisingly stable under one photon condition and nearly no photo initiation activity was found in classical photo DSC experiment. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Poly(2,2,2‐trifluoroethyl methacrylate) (PTFEMA), a partially fluorinated polymer, was directly grafted from silicon wafer surfaces by a surface‐initiated atom‐transfer radical polymerization (ATRP). The polymer layer thickness increased linearly with monomer conversion and molecular weight of free polymers in solution. The thickness was mainly determined by the experimental conditions such as activator/deactivator ratio, monomer/catalyst ratio, and monomer concentration. PTFEMA layers of more than 100‐nm thick were obtained. The grafted PTFEMA chains were “living” and allowed the extension of a second block of PMMA. X‐ray photoelectron spectroscopy study showed that the chemical compositions at the surfaces agreed well with their theoretical values. A novel surface‐attachable difunctional initiator was also synthesized and applied to the grafting of PTFEMA. The grafting density was doubled using this difunctional initiator, from 0.48 to 0.86 chains/nm2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1252–1262, 2006  相似文献   

18.
C18-modified silica gels with surface coverages of 2 to 8.2 micromol m(-2), were prepared by different synthetic pathways and characterized by Fourier Transform infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance (NMR) spectroscopy, and chromatographic measurements. The effects of temperature and bonding density on the conformational order of C18-modified silica gels were studied in detail by FTIR spectroscopy. The silane functionality and degree of cross-linking of silane ligands on the silica surface were evaluated by 29Si cross-polarization magic-angle spinning (CP/MAS) NMR and the structural order and mobility of the alkyl chains were investigated by 13C CP/MAS NMR spectroscopy. CH2 symmetric and anti-symmetric stretching bands and CH2 wagging bands were used as IR probes to monitor the conformational order and flexibility of the alkyl chains in the C18 phases. Qualitative information about the conformational order was obtained from frequency shifts of the CH2 symmetric and anti-symmetric stretching bands. The relative amounts of kink/gauche-trans-gauche, double-gauche, and end-gauche conformers in the alkyl chains were determined by analysis of CH2 wagging bands. These results indicate that surface coverage plays a dominant role in the conformational order of C18-modified silica gels. The FTIR and NMR data are discussed in the context of the chromatographic shape-selectivity differences.  相似文献   

19.
Polymer-hybridized liposomes (PHLs) of saturated lecithin were formed by association of poly(asparagines) grafted with alkyl chains (PAsn-g-Cn). The thermal, physical, and surface properties of the polymer-hybridized liposomes were examined with varying polymer concentration, alkyl chain length (C(8), C(12), C(18), C(22)), and degree of substitution (DS) in the polymer. The inclusion of the polymer raised the membrane fluidity of liposomes. By the incorporation of small amount of polymer, the membrane rigidity of liposomes dropped sharply and then increased close to the original level as the polymer concentrations increased in the cases of PAsn-g-C(18) and PAsn-g-C(22). Also, the membrane rigidity and stability of PHLs increased with alkyl chain length at the same polymer concentration. The surface charge of PHL associated with PAsn-g-C(22) was changed by DS of alkyl chains. The polymer bearing long alkyl chains (C(12), C(18), C(22)) formed PHLs well at low polymer concentration and the number of disk-shaped polymer-lipid mixed micelles increased with polymer concentration. The anchored polymers induced shifts in gel-to-liquid crystal transition temperature (Tc) of the vesicles and Tc varied with polymer concentration, alkyl chain length, and DS of the polymer.  相似文献   

20.
The effects of filler loading and a new silane coupling agent 3‐octanoylthio‐1‐ propyltriethoxysilane (NXT silane) on the polymer‐filler interaction and mechanical properties of silica‐filled and carbon black‐filled natural rubber (NR) compounds were studied. Silica (high dispersion silica7000GR, VN2, and VN3) and carbon black (N330) were used as the fillers, and the loading range was from 0 to 50 phr. The loading of NXT silane was from 0 to 6 phr. Experimental results show that the maximum and minimum torques of silica and carbon black‐filled NR increase with increasing filler loading. With increasing filler loading, the scorch time and optimum cure time decrease for carbon black‐filled NR, but increase for silica‐filled NR. The minimum torque, scorch time, and optimum cure time decrease because of the presence of NXT silane. For the carbon black and silica‐filled NR, the tensile strength and elongation at break have maximum values, but the hardness, M300, M100, and tear strength keep increasing with filler loading. The mechanical properties of silica‐filled NR were improved in the presence of NXT silane. With increasing filler loading, the storage modulus of filled NR increases, but the loss factor decreases. Carbon black shows the strongest polymer‐filler interaction, followed by VN3, 7000GR, and VN2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 573–584, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号