首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The crystal structures of the well-known complexes, [(Me4en)M(II)X2] (Me4en?=?N,N,N??,N??-tetramethylethylenediamine; M(II)?=?Pd(II) or Pt(II); X ??=?NO2 ? or NO3 ?) have been determined. For [(Me4en)Pd(NO2)2] and [(Me4en)Pt(NO2)2], the nitrite anion acts as a monodentate N-donor ligand in the solid state. In contrast, for [(Me4en)Pd(ONO2)(O2NO)], the two nitrate anions act as a monodentate O-donor (ONO2) and a bidentate O,O??-donor (O2NO). Recrystallization of [(Me4en)Pt(NO3)2] from Me2SO yields the Me2SO adduct with a monodentate O-donor nitrate and a counteranionic nitrate, [(Me4en)Pt(ONO2)(S-Me2SO)](NO3). The solution behavior of these complexes, including the equilibrium between coordinated and free Me2SO, has been investigated.  相似文献   

2.
The detection of Me3GeSiCl3, a product from the Si2Cl6 cleavage of trimethylgermylphosphanes, as a useful new source of SiCl2 moieties, as well as new trapping reactions of SiCl2 and GeCl2 with functional alkylidenephosphanes (Me3Si)2CPX (X = halide or dialkylphosphanyl [PRR; R = i-propyl, R = t-butyl]) are reviewed. In the primary step of the reactions, insertion into the P-X bond is competing with addition to the PC bond. SiCl2 and GeCl2 insertions are followed by dimerisation reactions leading to new highly functional P-phosphanylalkylidenephosphanes, that may rearrange to diphosphenes like (XCl2Si)(Me3Si)2C-PP-C(SiMe3)2SiCl2X (X = F, Cl, P-i-Pr2) or (Cl3Ge)(Me3Si)2C-PP-C(SiMe3)2GeCl2PRR or/and react further with SiCl2 or GeCl2. Reaction of (Me3Si)2CP-PRR (R = i-propyl, R = t-butyl) with Me3GeSiCl3 leads in a very selective fashion to a complete PC double bond cleavage by unique double SiCl2 addition with formation of a stable P-phosphanylphosphadisiletane.  相似文献   

3.
Silyldiazoalkanes Me3Si(LnM)CN2 (LnM = Me3Si, Me3Ge, Me3Sn, Me3Pb; Me3As, Me3Sb, Me3Bi) have been synthesized by three different routes: (a) reactions of the Me3SiCHN2 with metal amides LnMNR1R2 of Group IVB and VB elements, using Me3SnCl as catalyst; (b) reactions of the in situ prepared organolithium compound Me3SiC(Li)N2 with organometallic chlorides Me3MCl (M = Si, Ge); (c) tincarbon bond cleavage reaction of (Me3Sn)2CN2 with Me3SiN3, affording Me3SnN3, traces of bis(trimethylsilyl)diazomethane (Me3Si)CN2, trimethylsilyl(trimethylstannyl)diazomethane Me3Si(Me3Sn)CN2 and bis(trimethylsilyl)aminoisocyanide (Me3Si)2NNC as the major reaction products. IR and NMR data (1H, 13C, 29Si, 119Sn, 207Pb) of the new heterometal-diazoalkanes are reported and discussed in comparison to relevant compounds of the organometallic diazoalkane series.  相似文献   

4.
Addition of excesses of N-heterocyclic carbenes (NHCs) IEt2Me2, IiPr2Me2 or ICy (IEt2Me2 = 1,3-diethyl-4,5-dimethylimidazol-2-ylidene; IiPr2Me2 = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene; ICy = 1,3-dicyclohexylimidazol-2-ylidene) to [HRh(PPh3)4] (1) affords an isomeric mixture of [HRh(NHC)(PPh3)2] (NHC = IEt2Me2 (cis-/trans-2), IiPr2Me2 (cis-/trans-3), ICy (cis-/trans-4) and [HRh(NHC)2(PPh3)] (IEt2Me2(cis-/trans-5), IiPr2Me2 (cis-/trans-6), ICy (cis-/trans-7)). Thermolysis of 1 with the aryl substituted NHC, 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene (IMesH2), affords the bridging hydrido phosphido dimer, [{(PPh3)2Rh}2(μ-H)(μ-PPh2)] (8), which is also the reaction product formed in the absence of carbene. When the rhodium precursor was changed from 1 to [HRh(CO)(PPh3)3] (9) and treated with either IMes (=1,3-dimesitylimidazol-2-ylidene) or ICy, the bis-NHC complexes trans-[HRh(CO)(IMes)2] (10) and trans-[HRh(CO)(ICy)2] (11) were formed. In contrast, the reaction of 9 with IiPr2Me2 gave [HRh(CO)(IiPr2Me2)2] (cis-/trans-12) and the unusual unsymmetrical dimer, [(PPh3)2Rh(μ-CO)2Rh(IiPr2Me2)2] (13). The complexes trans-3, 8, 10 and 13 have been structurally characterised.  相似文献   

5.
With support by macrocyclic tertiary amine ligand 1,4,7-trimethyl-1,4,7-triazacyclononane (Me3tacn), a number of mononuclear metal–ligand multiple bonded complexes have been isolated. Starting with a brief summary of these complexes, the present review focuses on ruthenium-oxo and -imido complexes of Me3tacn. A family of monooxoruthenium(IV) complexes [RuIV(Me3tacn)O(N–N)]2+ (N–N = 2,2′-bipyridines) and a cis-dioxoruthenium(VI) complex cis-[RuVI(Me3tacn)O2(CF3CO2)]+ have been isolated, and the structures of [RuIV(Me3tacn)O(bpy)](ClO4)2 (bpy = 2,2′-bipyridine) and cis-[RuVI(Me3tacn)O2(CF3CO2)]ClO4 have been determined by X-ray crystallography. Oxidation of [RuIII(Me3tacn)(NHTs)2(OH)] (Ts = p-toluenesulfonyl) with Ag+ and electrochemical oxidation of [RuIII(Me3tacn)(H2L)](ClO4)2 (H3L = α-(1-amino-1-methylethyl)-2-pyridinemethanol) are likely to generate ruthenium-imido complexes supported by Me3tacn. DFT calculations on cis-[RuVI(Me3tacn)O2(CF3CO2)]+ and proposed ruthenium-imido complexes have been performed. Complexes [RuIV(Me3tacn)O(N–N)]2+ are reactive toward alkene epoxidation, and cis-[RuVI(Me3tacn)O2(CF3CO2)]+ efficiently oxidizes various organic substrates including concerted [3+2] cycloaddition reactions with alkynes and alkenes to selectively afford α,β-diketones, cis-diols, or CC bond cleavage products. Related oxidation reactions catalyzed by ruthenium Me3tacn complexes include epoxidation of alkenes, cis-dihydroxylation of alkenes, oxidation of alkanes, alcohols, aldehydes, and arenes, and oxidative cleavage of CC, CC, and C–C bonds, all of which exhibit high selectivity. Ruthenium Me3tacn complexes are also active catalysts for amination of saturated C–H bonds.  相似文献   

6.
Unique silsesquioxane materials, bearing highly sterically hindered carbosilane substituents at SiO3/2 centre, were derived from a novel precursor – (Me3Si)3CSiMe2CH2CH2Si(OEt)3 – in a hydrolytic condensation process under nucleophilic catalysis conditions. As proved by analytical results, crystalline or ladder-like [(Me3Si)3CSiMe2CH2CH2SiO3/2]n (PTSiSS) were obtained, depending on the applied reaction conditions. Due to the intrinsic features of (Me3Si)3CSiMe2–carbosilane substituent (the bulk and large amount of Si–C bonds), the obtained ladder-like silsesquioxanes show specific properties (good solubility, low dielectric constant κ).  相似文献   

7.
Reaction of potassium hypersilylchalcogenolates (Me3Si)3SiEK (E = S, Se, Te) with organochlorosilanes R4 − xSiClx (R = Me, Ph; x = 1-4) and methylchlorodisilanes (Si2Me5Cl, 1,2-Si2Me4Cl2) yields organosilicon hypersilylchalcogenolates [(Me3Si)3SiE]xSiR4 − x (x = 1-4) and [(Me3Si)3SiE]xSi2Me6 − x (x = 1, 2). A partial substitution product, [(Me3Si)3SiSe]2SiPhCl (2) has been obtained by reaction of PhSiCl3 with 1.5 equivalents (Me3Si)3SiSeK. Besides characterization by 1H, 13C, 29Si, 77Se and 125Te NMR spectroscopy the compounds [(Me3Si)3SiTe]2SiPh2 (1), [(Me3Si)3SiSe]2SiPhCl (2) and [(Me3Si)3SiSe]2Si2Me4(3) have also been analyzed by crystal structure analyses.Starting from (Me3Si)5Si2K treatment with sulfur gave the highly branched potassium heptasilanylthiolate (Me3Si)5Si2SK. Reactions with methylchlorosilanes Me4 − xSiClx (x = 1, 2, 3) yielded organosilicon heptasilanylthiolates [(Me3Si)3Si-(Me3Si)2Si-S]xSiMe3 − x.  相似文献   

8.
The alkyl-chlorosilyl-peroxides1 and2, the alkoxysilylalkyl-peroxides3 to7 (Table 1) as well as the hitherto unknown chlorosilanes (n-PrO)Me 2SiCl and (t-BuO)Me 2SiCl were prepared, isolated and characterized by analytical and1H-NMR data. Attempts to isolate the unstable peroxides (i-PrO)3SiOOCMe 3 and (Me 3CO)Me 2SiOOCMe 2 Ph failed.  相似文献   

9.
Chloride ligand substitution reactions of tert-butyl- and arylimido-titanium complexes supported by the pendant arm functionalised N-trimethylsilyl benzamidinate ligand Me3SiNC(Ph)NCH2CH2CH2NMe2 are described. Reaction of previously-described [Ti(NtBu){Me3SiNC(Ph)NCH2CH2CH2NMe2}Cl] (1) with PhLi afforded thermally sensitive [Ti(NtBu){Me3SiNC(Ph)NCH2CH2CH2NMe2}Ph] (2). The corresponding reaction of 1 with MeLi afforded [Ti(NtBu){Me3SiNC(Ph)NCH2CH2CH2NMe2}Me] (3) detected by 1H-NMR spectroscopy but this compound could not be isolated. Reaction of 1 with LiCH2SiMe3 gave a complex mixture, but with LiN(SiMe3)2 and LiO-2,6-C6H3Me2 the compounds [Ti(NtBu){Me3SiNC(Ph)NCH2CH2CH2NMe2}X] (X=N(SiMe3)2 (4) or O-2,6-C6H3Me2 (5)) were isolated. The X-ray structure of 5 was determined. Reaction of the homologous compound [Ti(NtBu){Me3SiNC(Ph)NCH2CH2NMe2}Cl] (6) (containing a 2-carbon atom chain in the pendant arm) with MeLi or PhLi were unsuccessful although the aryloxide compound [Ti(NtBu){Me3SiNC(Ph)NCH2CH2NMe2}(O-2,6-C6H3Me2)] (7) could be isolated from the reaction of 6 with LiO-2,6-C6H3Me2. Reaction of the 3-carbon pendant arm arylimido compound [Ti(N-2,6-C6H3Me2){Me3SiNC(Ph)NCH2CH2CH2NMe2}Cl] (8) with MeLi afforded thermally sensitive [Ti(N-2,6-C6H3Me2){Me3SiNC(Ph)NCH2CH2CH2NMe2}Me] (9), and although the analogous phenyl homologue was elusive, the aryloxide derivative [Ti(N-2,6-C6H3Me2){Me3SiNC(Ph)NCH2CH2CH2NMe2}(O-2,6-C6H3Me2)] (10) was successfully isolated and structurally characterised. Comparison of the X-ray structures of 5 and 10 show unexpectedly large differences between the TiNR and TiOAr bond lengths in the two compounds.  相似文献   

10.
Partial reduction of MeSiCl3 and Me2SiCl2 using CaH2 or (TiH2)n at high temperature (300°C) leads to MeSiHCl2 and Me2SiHCl, respectively, in good yields but in low proportion. In the presence of AlCl3 as catalyst the reaction affords Me2SiCl2 and Me3SiCl, in yields higher than those previously observed in the absence of a reducing agent. These redistribution reactions involve MeSiHCl2 and Me2SiHCl as intermediates. Consequently Me2SiHCl with or without Me2SiCl2 and Alcl3 deposited on carbon black as catalyst can undergo disproportionation to give Me3SiCl.  相似文献   

11.
Several methods for the preparation of Me3PtClO4 have been investigated: anhydrous, pure Me3PtCl04 was obtained by treating AgClO4 with Me3PtI in dry benzene. The compound issensitive to moisture and explodes on heat or shock treatment. Molecular weight determination indicates a tetrameric structure [Me3PtClO4]4, and spectroscopic data are consistent with this. Preliminary X-ray investigation of a single crystal indicates a crystal symmetry I4I/amd (Schoenflies: D194h) with four [Me3PtClO4]4 units in a tetragonal cell (a = b = 11.267(5); c = 25.09(1)) and local symmetry D2d of the [Me3PtCl04]4 structure.  相似文献   

12.
[(C5Me5Ir)2Cl4] reacts with Al2Me6 in saturated hydrocarbons to give [C5Me5IrMe4) or cis- and trans-[C5Me5Ir)2Me2(α-CH2)2], depending on workup conditions. In benzene or toluene solution the main product is [(C5Me5Ir)2Me(Aryl)(α-CH2)2] (aryl = Ph or m- plus p-tolyl, ratio 2/1); if CO is introduced into the benzene solution the products are [C5Me5Ir(CO)R1R2] (R1 = Me, R2 = Ph; R1 = R2 = Me or Ph).  相似文献   

13.
The electrophilic cleavage reaction of (Me3Sn)2CN2 with the Me3SiN3 in diluted ethereal solution affords well-formed crystals of Me3SnN2 in excellent yield; the azide was investigated by single crystal X-ray methods. Me3SnN3 crystallizes in the pseudohexagonal space group P2/b2/n21/n with Z = 4, dc = 1.960 g cm?3; a = 1172.5(6); b = 679.5(4); c = 875.5(5) pm; V = 697.55 Å3.A total of 480 unique non-zero reflections was obtained at room temperature; refining the structure with anisotropic temperature factors for all non-hydrogen atoms and with isotropic temperatures factors for the hydrodgen atoms resulted in a conventional R-value of 0.024. Exactly planar Me3Sn-groups are linked in zig-zag-chains by linear N3-groups while the tin atoms adopt almost ideal symmetric trigonal bipyramidal coordination; the methyl groups of the Me3Sn moieties are arranged in a staggered conformation along the c-axes.  相似文献   

14.
The compounds TsiSiR2X [Tsi = Me3Si)3C; R = Me, X = Cl, Br, I, or R = Ph, X = F, Cl, Br, I)] react with boiling 2 M MeONa-MeOH to give products of the type (Me3Si)2CHSiR2OMe. It is suggested that the reaction proceeds through an elimination, analogous to E2 eliminations of alkyl halides, involving synchronous attack of MeO? at an Me3Si group, liberation of X?, and formation of (Me3Si)2CSiR2. The compounds TsiSiPhMeF TsiSiPhCl2 react analogously to give (Me3Si)2CHSiPhMe(OMe) and (Me3Si)2CHSiPh(OMe)2 [tha latter presumably by solvolysis of the initially-formed (Me3Si)2CHSiPhCl(OMe)]. The compounds TsiSiMe2OMe and TsiSiMe3 do not react, while TsiSiMe2H gives TsiH. The compound TsiSiCl3 reacts with 0.1 M MeONa-MeOH to give the substitution and elmination products TsiSiCl2(OMe) and (Me3Si)2CHSi(OMe)3 in ca. 12 ratio.  相似文献   

15.
N-Lithiomethanesulfinicacidimide amides of the general composition MeS(NR)NRLi (II) are prepared by addition of methyllithium to sulfur diimides RNSNR (I) (R  t-Bu or SiMe3. The corresponding reaction with Me3SnNSNSnMe3 yields the N-lithio salt (Me3SnNSN)Li (III) and tetramethylstannane; addition compounds are not formed. Methatetical reactions of II with chlorostannanes, Me3SnCl or Me2SnCl2, leads to the formation of the sulfinicacidimideamidostannanes MeS(NR)NRSnMe3 (IV) and MeS(NR)NRSnClMe2 (Va), respectively.  相似文献   

16.
The insertion of N,N′-dicyclohexylcarbodiimide at one of the Y-N bonds of the [(Me3Si)2N]3Y complex in toluene at 70 °C afforded the monoguanidinate diamide derivative { (Me3Si)2NC(N-cyclo-Hex)2}Y[N(SiMe)3]2 (1) (cyclo-Hex is cyclohexyl) in 72% yield. The reaction of equimolar amounts of sodium N,N′-dicyclohexyl-N″-bis(trimethylsilyl)guanidinate, which was prepared in situ from {(Me3Si)2N}Na and N,N′-dicyclohexylcarbodiimide, and YbI2(THF)2 in THF gave the [{(Me3Si)2NC(N-cyclo-Hex)2}YbI(THF)2]2 complex (2). An attempt to use this procedure for the synthesis of the yttrium compound { (Me3Si)2NC(NSiMe3)2}2YCl containing the sterically more hindered guanidinate ligand unexpectedly led to the formation of the diamide chloride complex [{(Me3Si)2N}2Y(THF)(µ-Cl)]2 (3). The structures of complexes 1–3 were established by X-ray diffraction. Compound 1 is mononuclear. Complexes 2 and 3 are dinuclear and contain two µ2-bridging halide ligands.  相似文献   

17.
Potentiometric studies of the interaction of (Me2Sn)2+ and (Me3Sn)+ with 5′-guanosine monophosphate [(5′-HGMP)2?, abbreviated as (HL-1)2?] and guanosine [(HGUO), abbreviated as (HL-2)] in aqueous solution (I = 0.1 mol·dm?3 KNO3, 298.15 ± 0.1 K) were performed, and the speciation of various complex species was evaluated as a function of pH. The species that exist at physiological pH ~7.0 are Me2Sn(HL-1)/[Me2Sn(HL-2)]2+ (87.0/88.8 %), [Me2Sn(HL-1)(OH)]?/[Me2Sn(HL-2)(OH)]+ (3.0/0 %) and [Me2Sn(HL-1H?1)]/[Me2Sn(HL-2H?1)]2+ (9.4/6.6 %) for 1:1 dimethyltin(IV):5′-guanosine monophosphate/dimethyltin(IV): guanosine systems, whereas for the corresponding 1:2 systems, the species are Me2Sn(HL-1)/[Me2Sn(HL-2)]2+ (44.0/92.0 %), [Me2Sn(HL-1H?1)]/[Me2Sn(HL-2H?1)]2+ (5.0/6.0 %), Me2Sn(OH)2 (49.0/0 %), [Me2Sn(HL-1)(OH)]?/[Me2Sn(HL-2)(OH)]+ (1.5/2.0 %), and [Me2Sn(OH)]+ (1.0/0 %). For 1:1 trimethyltin(IV):5′-guanosine monophosphate/trimethyltin(IV):guanosine systems, only [Me3Sn(HL-1)]?/[Me3Sn(HL-2)]+ (99.9 %) are found at pH = 7.0, whereas for 1:2 systems, [Me3Sn(HL-1)]?/[Me3Sn(HL-2)]+ (49.8/100 %), Me3Sn(OH) (15.0/0 %) and [Me3Sn(HL-1)(OH)]2?/Me3Sn(HL-2)(OH) (0.2/0 %) are the species found. No polymeric species were detected. Beyond pH = 8.0, significant amounts of [Me2Sn(OH)]+, Me2Sn(OH)2, [Me2Sn(OH)3]? and Me3Sn(OH) are formed. Multinuclear (1H, 13C and 119Sn) NMR studies at different pHs indicated a distorted octahedral geometry for the species Me2Sn(HL-1)/[Me2Sn(HL-2)]2+ in dimethyltin(IV)-(HL-1)2?/(HL-2) systems and a distorted trigonal bipyramidal/distorted tetrahedral geometry for the species [Me3Sn(HL-1)]?/[Me3Sn(HL-2)]+ in trimethyltin(IV)-(HL-1)2?/(HL-2) systems.  相似文献   

18.
The organoantimony(III) difluorides containing Y,C,Y-chelating, so called pincer, ligands ([2,6-(YCH2)2C6H3]SbF2; Y = MeO, t-BuO and Me2N) were prepared by the reaction of corresponding dichlorides ([2,6-(YCH2)2C6H3]SbCl2; Y = MeO, t-BuO and Me2N) with two equivalents of organotin(IV) fluorinating agents Me3SnF or 2-(Me2NCH2)C6H4Sn(n-Bu2)F, respectively. The structure of organonantimony fluorides was determined both in solution by 1H, 13C and 19F NMR spectroscopy and in the solid state using X-ray diffraction.  相似文献   

19.
The preparation of arene-rhodium(I) complexes of the general formula Rh(Me3TFB)PhBPh3 and [Rh(Me3TFB)(arene)]ClO4 (Me3TFB = trimethyltetrafluorobenzobarrelene; arene = C6H6?nMen (n = 0, 1, 2, 3, 4 or 6); C6H6?nXn (X = F, n = 2 or 6; X = Cl, n = 1 or 2) are described. For arenes of the type C6H6?nXn the dissociation of the coordinated arene (studied by NMR spectroscopy in deuteroacetone) is complete, but for arenes of the type C6H6?nMen it decreases with increasing methyl substitution in the arene ligand.The crystal structure of [Rh(Me3TFB)(1,4-C6H4Me2)]ClO4 has been determined by X-ray diffraction. The compound crystallizes in the Pbca space group, with lattice periodicities of 17.7393(4), 15.7816(3) and 16.0071(3) Å. δR-analysis, for the 3953 total recorded reflections, support the refinement carried out to a final R-value of 0.062. The bonding of the arene to the rhodium is η6, with the ring slightly puckered to give a distorted skew conformation.  相似文献   

20.
It is found that electrosurface transition (EST) through eutectic interfaces of (?/+)WO3|MeWO4(+/?) induced by electric field is a reversible process. In the case of the (?/+) polarity, nominally, in the ??direct experiment??, macro amounts of WO3 from a W 3 (?) brick are drawn in the (+) direction onto the inner surface of MeWO4 forming a two-phase {ie1070-1} composite. Simultaneously, nonequivalent countertransport of Me 2+ within the W 3 (?) brick occurs, which changes the color of W 3 (?) from the natural hue to dark-green. Intercalation of Me 2+ into W 3 (?) is proved by several spectroscopic methods. The key role in the EST phenomenon belongs to a nonautonomous electrolytic phase of MeW-s formed on the contact interface with WO3|MeWO4. The composition of MeW-s is close to W/Me ?? 2. As a result of EST, the cell acquires a more complicated structure: {fx1070-1} where |///| are interface regions occupied by the MeW-s phase. At the cathodic boundary of subcell {fx1070-2} the following process occurs: {fx1070-3}, The process at the anodic boundary is: {fx1070-4}. Ultimately, WO3 is transported in the (+) direction (into the composite) and Me 2+ penetrates under the effect of the gradient in chemical potential into W 3 (?) forming a dark-green Me x WO3 phase with its front reaching the (?) Pt electrode. After the end of the ??direct experiment??, the cell polarity was changed to (+/?) and the ??reverse experiment?? was carried out. Now, on the cathodic boundary | 4 of subcell {fx1070-5} anions (WO4)2? are generated that are discharged on boundary 3 | to oxide WO3 that is intercalated into the right boundary of MeWO4 ? (3), where the rightmost composite region {ie1070-2} is formed. Thus, the mass of W 3 (?) decreases; it becomes dark-green (see above) and the mass of the MeWO4 disk continues growing and now its structure is as follows {ie1070-3}. It is important that the left W 3 (+) disk that was dark-green after the ??direct experiment?? gradually becomes lighter in the ??reverse experiment?? up to its natural pale green color, i.e., Me 2+ is deintercalated from it: Me 2+: Me x WO3 + 1/2O2 ?? xMe 2+ + 2e + WO3. It is found that dependences of variations of disk masses ??m(Q) practically coincide for the ??direct?? and ??reverse?? experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号