首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of magnetic susceptibility χ as a function of temperature T and of magnetisation M as a function of applied magnetic field H at a number of fixed temperatures were made on polycrystalline samples of Cu2FeGeSe4. The χ versus T data show that an antiferromagnetic transition occurs at 20 K and that a second transition occurs at 8 K, indicating a transition to weak ferromagnetic form. The M versus H curves indicated that at all temperatures below 70 K bound magnetic polarons (BMP) occur, in the paramagnetic, antiferromagnetic and weak ferromagnetic ranges. Below 8 K, the M versus H curves exhibited magnetic hysteresis, and this is attributed to the interaction of the BMPs with tetragonally anisotropic matrix. The B versus H curves were well fitted by a Langevin-type of equation, and the variation of the fitting parameters determined as a function of temperature. These showed that above 20 K the total BMP magnetisation fell almost linearly with increasing temperature and effectively disappeared at 70 K. The number of BMPs remained practically constant with temperature having a mean value of 6.55×1018/cm3. The analysis gave a value of 213 μB for the average magnetic moment of a BMP, corresponding to 42.4 Fe atoms. Using a simple spherical model, this gives the radius of a BMP as 12.0 Å.  相似文献   

2.
We report an easy single step synthesis route of title compound NdFeAsO0.80F0.20 superconductor having bulk superconductivity below 50 K. The title compound is synthesized via solid-state reaction route by encapsulation in an evacuated (10-3 Torr) quartz tube. Rietveld analysis of powder X-ray diffraction data shows that compound crystallized in tetragonal structure with space group P4/nmm. R(T)H measurements showed superconductivity with T c (R = 0) at 48 K and a very high upper critical field (H c2) of up to 345 T. Magnetic measurements exhibited bulk superconductivity in terms of diamagnetic onset below 50 K. The lower critical field (H c1) is around 1000 Oe at 5 K. In normal state i.e., above 60 K, the compound exhibited purely paramagnetic behavior and thus ruling out the presence of any ordered FeO x impurity in the matrix. In specific heat measurements a jump is observed in the vicinity of superconducting transition (T c ) along with an upturn at below T = 4 K due to the AFM ordering of Nd+3 ions in the system. The Thermo-electric power (TEP) is negative down to T c , thus indicating dominant carriers to be of n-type in NdFeAsO0.80F0.20 superconductor. The granularity of the bulk superconducting NdFeAsO0.8F0.2 sample is investigated and the intra and inter grain contributions have been individuated by looking at various amplitude and frequencies of the applied AC drive magnetic field.  相似文献   

3.
High-resolution SQUID magnetization measurements in a single crystal of YNi2B2C around the superconducting transition are reported. The diamagnetic magnetization -M fl at constant field H as a function of temperature and isothermal magnetization curves -M fl vs. H are used to derive insights on precursor phenomena approaching the bulk transition temperature K. The precursor diamagnetism is found strongly enhanced with respect to the conventional Ginzburg-Landau value for Gaussian fluctuations and the curves -M fl vs. H exhibit an upturn with the field and hysteretic effects up to T * = 15.4 K. These results are interpreted in terms of a non-zero order parameter in superconducting droplets above the bulk T c . These droplets are likely to be related to inhomogeneities resulting from small amount of boron to carbon substitutions.Received: 23 April 2003, Published online: 15 October 2003PACS: 74.40.+k Fluctuations (noise, chaos, nonequilibrium superconductivity, localization, etc.) - 74.20.De Phenomenological theories (two-fluid, Ginzburg-Landau, etc.) - 74.25.Ha Magnetic properties  相似文献   

4.
VPS Awana  M Karppinen  H Yamauchi 《Pramana》2002,58(5-6):809-815
Both RuSr2GdCu2O8-δ (Ru-1212) and RuSr2Gd1.5Ce0.5Cu2O10-δ (Ru-1222) exhibits magnetism and superconductivity, as seen by magnetization vs. temperature behavior measured in 5 Oe field. Zero-field-cooled (ZFC) and field-cooled (FC) magnetization data show branching at around 140 K and 100 K with a cusp at 135 K and 80 K and a diamagnetic transition around 20 K and 30 K in the ZFC part, for Ru-1212 and Ru-1222, respectively. The isothermal magnetization possesses a non-linear contribution due to a ferromagnetic component at low temperatures below 50 K for both samples. The resistance vs. temperature behavior of the samples in applied fields of 0, 3 and 7 T confirmed superconductivity, with a different type of broadening of the superconductivity transition under magnetic fields for Ru-1212 from that known for conventional high-T c superconductors. The magnetoresistance (MR) is negative above the Ru magnetic ordering temperature at 135 K. Below the Ru magnetic ordering temperature, MR displays a positive peak at low fields and becomes negative at higher fields for Ru-1212. For Ru-1222, MR remains negative both above and below the ordering temperature. A maximum of 2% is observed for the negative MR value at the Ru magnetic ordering temperature. An electron diffraction pattern obtained for the Ru-1212 sample shows two types of superstructure: one has a weak spot at the centre of the a–b rectangle, and the other only along the b direction. Interestingly, Ru-1222 shows only clean a–b and a–c planes, without any superstructures.  相似文献   

5.
Magnetization, electrical resistivity and heat capacity have been measured on a single crystal V3Si in the range of (2-25) K and in magnetic field up to 14 T. A different behavior of magnetization for two orientations of the crystal has been found. In one orientation the magnetization displays a clear ferromagnetic character and below T c coexistence of ferro-magnetism and superconductivity with a peak-effect in the vicinity of upper critical field H c2. The specific heat measurements show sharp lambda anomaly corresponding to a transition to superconductive state and an additional anomaly around 15 K when applied field suppresses the superconductivity below this temperature.  相似文献   

6.
The magnetic properties of hematite powders produced by a solid state nucleation-and-growth process are studied as a function of temperature T and applied field H. Independently of the temperature, there exists a soft magnetic contribution that is assigned to the canting of spins at the superficial shell of each particle and is not affected by the Morin transition. At 220<T<T M a magnetic contribution with high coercivity is observed, due to spin–flop in the anti ferromagnetic state and above T M =248 K the weakly ferromagnetic state has a coercivity that ranges from 6 kOe to 4 kOe when raising T up to room temperature. Different sub-grain structures were obtained by means of isochronal and isothermal annealing. Changes in the susceptibility are directly related to the sub-particle size. It is concluded that sub-boundaries are the defects responsible for the high coercivities observed in the weakly ferromagnetic state.  相似文献   

7.
We report magnetization and specific heat measurements down to 2?K and electrical resistivity down to millikelvin temperatures on polycrystalline samples of the non-centrosymmetric compound Yb2Co12P7. In addition to the previously reported ferromagnetic ordering of the cobalt sub-lattice at T C ?=?136?K we find a magnetic transition below T M ?=?5?K that is likely associated with ordering of the Yb ions. The broad nature of the specific heat anomaly suggests disordered magnetism and possible short-range correlations well above TM .  相似文献   

8.
刘毅 《中国物理 B》2010,19(7):77201-077201
The magnetic,conductivity,and dielectric properties have been investigated in single-phase polycrystalline Y0.1 Co1.9 MnO4.The temperature-dependent magnetisation reveals the ferromagnetic transition in sample at a low temperature (~186 K).Magnetisation as a function of field H (M-H loop) indicated the weak ferromagnetism of the sample at room temperature.The constant ε and dielectric loss tgδ measurements represent a ferroelectric phase transition at a higher temperature (~650 K),while the conductivity shows an insulator-metallic transition.The ferroelectric hysterisis loops and capacitance-voltage measurements confirm the ferroelectric nature of the sample at room temperature.The observed ferromagnetism and ferroelectric nature in this material suggests a potential multiferroic application.  相似文献   

9.
We report the magnetocaloric effect in the metamagnetic compound Gd2In obtained from magnetization measurement. Gd2In was previously reported to have two magnetic transitions: (i) a paramagnetic to ferromagnetic transition below 190 K and (ii) a ferromagnetic to an antiferromagnetic state below 105 K. The low temperature antiferromagnetic state is unstable under an applied magnetic field and undergoes metamagnetic transition to a ferromagnetic like state. We observe conventional positive magnetocaloric effect (the magnetic entropy change, ΔSM<0) around 190 K at all applied fields. The magnetocaloric effect is found to be inverse (negative) at low fields around 105 K (ΔSM>0), however it turns positive at higher fields (ΔSM<0). The observed anomaly is found to be related to the field induced transition which drives the system from an antiferromagnetic to a ferromagnetic state.  相似文献   

10.
A study of the half-metallic character of the semi Heusler alloys Co1−xCuxMnSb (0?x?0.9) is presented. We investigated the saturation magnetization MS at temperatures from 5 K to room temperature and the temperature dependence of the DC magnetic susceptibility χ above Curie temperature TC. The magnetic moments at 5 K, for most compositions are very close to the quantized value of 4 μB for Mn3+ ion, the compound with 90% Co substituted by Cu is still ferromagnetic with MS (5 K)=3.78 μB/f.u. These results emphasize the role of Co atoms in maintaining the ferromagnetic order in the material. The Curie temperature is decreased from 476 K to about 300 K as the Cu content increases from 0% to 90%. Above TC, the χ−1 vs T curves follow very well the Curie–Weiss law. The effective moment μeff and paramagnetic Curie temperature θ are derived. A comparison between the values of MS at 5 K and μeff shows a transition from localized to itinerant spin system in these compounds.  相似文献   

11.
We report resistivity and magnetization measurements on an amorphous Ni74Mn24Pt2 thin film in the temperature range of 3–300 K. Two significant features are apparent in both the magnetic susceptibility and electrical resistivity. A low-temperature (low-T) anomaly is observed at about 40 K, where a cusp appears in the resistivity, while a concomitant step-like increase in zero-field-cooled (ZFC) magnetization (M) appears with increasing temperature. The low-T anomaly is attributed to a crossover from a pure re-entrant spin-glass within individual domains to a mixed ferro-spin-glass regime at lower temperatures. By contrast, the high-temperature (high-T) anomaly, signaled by the appearance of hysteresis below 250 K, corresponds to the freezing of transverse spins in individual domains acting independently. Between the low-T and high-T anomalies a small but discernable magnetic hysteresis is observed for warming vs. cooling in the field-cooled (FC) case. This behavior clearly indicates the presence of domain structure in the sample, while the disappearance of this hysteresis at lower temperatures indicates the complete freezing of the spin orientation of these domains. According to these results, we have divided the magnetic state of this sample into three regions: at temperatures above 250 K, the sample behaves like a soft ferromagnet, exhibiting M vs. H loops with very small hysteresis (less than 5 Oe). As the temperature is lowered into the intermediate region (the range 40–250 K), spins become frozen randomly and progressively within the individual domains. These domains behave independently, rather than as a cooperative behavior of the sample. Weak irreversibility sets in, indicating the onset of transverse spin freezing within the domains. At temperatures below 40 K, the M vs. H loops exhibit larger hysteresis, for both the ZFC and FC cases, as in a pure spin-glass. We have also demonstrated giant noise in the resistivity at temperatures just below 250 K. Such noise can originate from fluctuations of the domains near the film surface because of competing effective bulk and surface anisotropy fields. The large observed amplitude may be explained by means of a large ferromagnetic anisotropy in the resistivity due to the large spin–orbit effect seen in NiMn systems. Finally, the low-T peak in the resistivity has been analyzed using Fisher and Langer's expression based on the Friedel Model proposed for critical transitions in transition metals (sd systems). The fitted results are in satisfactory agreement with the predictions of this model.  相似文献   

12.
The TiO2-Mn-TiO2 multilayers are successfully grown on glass and silicon substrates by alternately using radio frequency reactive magnetron sputtering and direct current magnetron sputtering. The structures and the magnetic behaviours of these films are characterised with x-ray diffraction, transmission electron microscope (TEM), vibrating sample magnetometer, and superconducting quantum interference device (SQUID). It is shown that the multi-film consists of a mixture of anatase and rutile TiO2 with an embedded Mn nano-film. It is found that there are two turning points from ferromagnetic phase to antiferromagnetic phase. One is at 42 K attributed to interface coupling between ferromagnetic Mn3O4 and antiferromagnetic Mn2O3, and the other is at 97 K owing to the interface coupling between ferromagnetic Mn and antiferromagnetic MnO. The samples are shown to have ferromagnetic behaviours at room temperature from hysteresis in the M-H loops, and their ferromagnetism is found to vary with the thickness of Mn nano-film. Moreover, the Mn nano-film has a critical thickness of about 18.5 nm, which makes the coercivity of the multi-film reach a maximum of about 3.965×10 2 T.  相似文献   

13.
We present low-temperature magnetic properties for a high-quality polycrystalline sample of the first ferromagnetic superconductor Y9Co7. The results of susceptibility and magnetization measurements show the coexistence of a weak itinerant ferromagnetic order with a Curie temperature of TC ? 4.5 K and superconductivity below TS = 3 K. Several electronic quantities and parameters characterizing the superconducting and normal state are calculated within the Ginzburg–Landau–Abrikosov–Gorkov theory. The data reveal clean limit superconductivity in Y9Co7 due to the good chemical purity and structural order of the specimen.  相似文献   

14.
We report synthesis and search for superconductivity of Ba, Sr, Ca and Mg-GIC. We adopted conventional vapor phase reaction in order to prepare high quality GICs. No superconducting transition was found for Ba and Mg-GIC. As for Sr, Sr-GIC showed a sharp superconducting transition at Tc=1.65 K. Sr graphite compound SrCx prepared from powder graphite by thermal treatment at higher temperature showed ferromagnetic character.  相似文献   

15.
In this study the magnetic properties of Mn0.95Cr0.05As, prepared by mechanical milling, have been investigated. The results suggest that the presence of strains is very important for the magnetic state of the compound. In the presently studied compound, a combined magnetic and structural transition occurs from paramagnetic MnP phase to ferromagnetic NiAs phase at about 234 K. With further decreasing temperature, at 159 K, a transition from ferromagnetic NiAs phase to helimagnetic (Ha-type) MnP phase is observed, which is accompanied by an inverse magnetocaloric effect. The ferromagnetic phase is recovered when the temperature is increased. At both first-order transitions, at 159 and 234 K, large magnetic-entropy changes are observed.  相似文献   

16.
We propose a t-J-I model with direct ferromagnetic exchange I to explain the superconductivity of copper oxides and the ruthenate Sr2RuO4 on the basis of the analysis of the electronic structure of these substances. We analyze the possible p-and d-type superconducting solutions. Solutions of the s type with singlet pairings are impossible in the strong-electron-correlations regime, and p-type solutions correspond to triplet superconductivity and is formed near the ferromagnetic instability threshold in ruthenates. The solution with the symmetry near the antiferromagnetic instability threshold corresponds to copper oxides. We also discuss the reason for the high values of the superconducting transition temperature (T c ∼100 K) in copper oxides and the low values (T c ∼1 K) in ruthenates. Zh. éksp. Teor. Fiz. 116, 655–670 (August 1999)  相似文献   

17.
The effects of monovalent doping on the crystallographic, magnetic and magnetocaloric properties of La0.65Ba0.3M0.05MnO3 (M=Na, Ag, K) powder samples, elaborated using the solid state reaction method at high temperature, have been investigated. In our three samples the Mn4+ amount remains constant equal to 40%. The Rietveld refinement of the X-ray powder diffraction shows that all our synthesized samples are single phase and crystallize in the distorted rhombohedral system with R3¯c space group. All our studied samples undergo a paramagnetic–ferromagnetic transition with decreasing temperature. Using the Arrott plot, the second-order transition Curie temperature TC for M=Na, Ag and K is found to be 310, 300 and 290 K, respectively. The magnetic entropy change, deduced from isothermal magnetization curves, exhibits a maximum |ΔSMMax| of about 2.65, 2.82 and 2.66 J/kg K for M=Na, Ag and K, respectively, in a magnetic applied field change of 5 T. Although these values are modest, the magnetocaloric effect extends over a large temperature range leading to an important value of the relative cooling power (RCP). The RCP values exhibit a nearly linear dependence with the magnetic applied field. The refrigeration capacity in a magnetic applied field of 1 T is found to be 28.8, 27.8 and 25.6 J/kg for M=Na, Ag and K compounds.  相似文献   

18.
Measurements of magnetic susceptibility χ, in the temperature range from 2 to 300 K, and of magnetization M vs. applied magnetic field B, up to 5 T, at various temperatures were made on polycrystalline samples of the Mn2GeTe4 compound. It was found that Mn2GeTe4 has a Néel temperature TN of about 135 K, shows mainly antiferromagnetic behavior with a very weak superimposed ferromagnetic component that is attributed to spin canting. Also, the magnetic results suggest that a possible spin-glass transition takes place at Tf≈45 K. The spin-glass order parameter q(T), determined from the susceptibility data, was found to be in agreement with the prediction of conventional spin-glass theory. The M vs. B results indicated that bound magnetic polarons (BMPs) occur in the compound, and that the effects from BMPs disappear at approximately 80 K. The M vs. B curves were well fitted by a Langevin type of equation, and the variation of the fitting parameters determined as a function of temperature. Using a simple spherical model, the radius of the BMP in the material was found to be about 27 Å; this value is similar to the effective Bohr radius for an acceptor in the II-IV-V2 and I-III-VI2 ternary semiconductor compounds.  相似文献   

19.
The elastic properties and the generalized-stacking-fault-energy (GSFE) in MeO (Me = Mg, Ca) under different pressures have been calculated using the first principle calculations. In the anisotropic elasticity theory approximation, by using the Foreman’s method, the core structure and Peierls stress of $\tfrac{1} {2}\left\langle {110} \right\rangle \left\{ {110} \right\}We report structural, DC magnetization, detailed linear/non-linear AC susceptibility, (with applied frequency and amplitude) isothermal and thermoremanent magnetization (TRM) behavior for RuSr2Y1.5Ce0.5Cu2O10 (YRu-1222) magneto-superconductor to understand its complex magnetism. Studied sample is synthesized through the novel solid state high pressure (6?GPa) high temperature (1450?°C) (HPHT) technique. The compound is crystallized in tetragonal structure with space group I4/mmm (No.?139). DC magnetic susceptibility shows that studied YRu-1222 is magneto-superconducting with Ru spins magnetic ordering at around 110?K and superconductivity (SC) in the Cu-O2 planes below ?~?30?K. Frequency and field dependent detailed AC magnetic susceptibility measurements confirms the spin-glass (SG) behavior with homogeneous/non-homogeneous ferromagnetic (FM) clusters in this system. Variation of cusp position with applied AC frequency follows the famous Vogel-Fulcher law, which is commonly accepted feature for spin-glass (SG) system with homogeneous/non-homogeneous ferromagnetic clusters embedded in spin-glass (SG) matrix. Above the freezing temperature (T f ), first and third harmonics AC susceptibility analysis indicated possibility of the co-existence of spin cluster ferromagnetism with superparamagnetism (SPM). The M-H loops at low temperature exhibit the ferromagnetic behavior with rather small coercive field (H c ) and remnant magnetization (M r ). Summarily, the magnetic (DC and AC) susceptibility measurements and their analysis have enabled us to unearth the complex magnetism in terms of successive SG-FM-SPM transitions with temperature.  相似文献   

20.
The high-temperature phase transition is analyzed according to the DSC of as-cast LaFe11.7 Si1.3 compound and the X-ray patterns of LaFe11.7Si1.3 compounds prepared by high-temperature and short-time annealing. Large amount of 1:13 phase begins to appear in LaFe11.7Si1.3 compound annealed near the melting point of LaFeSi phase (about 1422?K). When the annealing temperature is close to the temperature of peritectic reaction (about 1497?K), the speed of 1:13 phase formation is the fastest. The phase relation and microstructure of the LaFe11.7Si1.3 compounds annealed at 1523?K (5?h), 1373?K (2?h)?+?1523?K (5?h), and 1523?K (7?h) +1373?K (2?h) show that longer time annealing near peritectic reaction is helpful to decrease the impurity phases. For studying the influence of different high-temperature and short-time annealing on magnetic property, the Curie temperature, thermal, and magnetic hystereses, and the magnetocaloric effect of LaFe11.7Si1.3 compound annealed at three different temperatures are also investigated. Three compounds all keep the first order of magnetic transition behavior. The maximal magnetic entropy change ΔSM (T, H) of the samples is 12.9, 16.04, and 23.8?J?kg?1?K?1 under a magnetic field of 0–2?T, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号