首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characteristic properties of the coronene layer formed on Au(111) for the epitaxial growth of various fullerenes are described. The electrochemical behavior of the coronene adlayer prepared by immersing a Au(111) substrate into a benzene solution containing coronene was investigated in 0.1 M HClO4. The as-prepared coronene adlayer on Au(111) revealed a well-defined (4 x 4) structure. Structural changes of the array of coronene molecules induced by potential manipulation were clearly observed by in situ scanning tunneling microscopy (STM). Supramolecularly assembled layers of fullerenes such as C60, C70, C60-C60 dumbbell dimer (C120), C60-C70 cross-dimer (C130), and C60 triangle trimer (C180) were formed on the well-defined coronene adlayer on the Au(111) surface by immersing the coronene-adsorbed Au(111) substrate into benzene solutions containing those molecules. The adlayers thus prepared were characterized by comparison with those which were directly attached to the Au(111) surface. The C60 molecules formed a honeycomb array with an internal structure in each C60 cage on the coronene adlayer, whereas C70 molecules were one-dimensionally arranged with the same orientations. The dimers, C120 and C130 molecules, formed an identical structure with c(11 x 4 radical3)rect symmetry. For the C130 cross-dimer molecule, C60 and C70 cages were clearly recognized at the molecular level. It was difficult to identify the adlayer of the C180 molecule directly attached to Au(111); however, individual C180 molecules could be recognized on the coronene-modified Au(111) surface. Thus, the adlayer structures of those fullerenes were strongly influenced by the underlying coronene adlayer, suggesting that the insertion of a coronene adlayer plays an important role in the formation of supramolecular assemblies of fullerenes.  相似文献   

2.
Low-temperature scanning tunneling microscopy has been used to characterize the various structures of submonolayer and near-monolayer coverages of benzene (C6H6) on Au[111] at 4 K. At low coverage, benzene is found to adsorb preferentially at the top of the Au monatomic steps and is weakly adsorbed on the terraces. At near-monolayer coverage, benzene was found to form several long-range commensurate overlayer structures that depend on the regions of the reconstructed Au[111] surface, namely a (radical 52 x radical 52)R13.9 degrees structure over the hcp regions and a (radical 133 x radical 133)R17.5 degrees "pinwheel" structure over the fcc regions. Time-lapse imaging revealed concerted cascade motion of the benzene molecules in the (radical 133 x radical 133)R17.5 degrees pinwheel overlayer. We demonstrate that the observed cascade motion is a result of concerted molecular motion and not independent random motion.  相似文献   

3.
We report the first scanning tunneling microscope (STM) investigation, combined with density functional theory calculations, to resolve controversy regarding the bonding and structure of chlorine adsorbed on Au(111). STM experiments are carried out at 120 K to overcome instability caused by mobile species upon chlorine adsorption at room temperature. Chlorine adsorption initially lifts the herringbone reconstruction. At low coverages (<0.33 ML), chlorine binds to the top of Au(111)-(1 x 1) surface and leads to formation of an overlayer with (square root(3) x square root(3))R30 degree structure at 0.33 ML. At higher coverages, packing chlorine into an overlayer structure is no longer favored. Gold atoms incorporate into a complex superlattice of a Au-Cl surface compound.  相似文献   

4.
We have studied the adsorption of benzenethiol molecules on the Au(111) surface by using first principles total energy calculations. A single thiolate molecule is adsorbed at the bridge site slightly shifted toward the fcc-hollow site, and is tilted by 61 degrees from the surface normal. As for the self-assembled monolayer (SAM) structures, the (2 square root of 3 x square root of 3)R30 degrees herringbone structure is stabilized against the (square root 3 x square root 3)R30 degrees structure by large steric relaxation. In the most stable (2 square root 3 x square root 3)R30 degrees SAM structure, the molecule is adsorbed at the bridge site with the tilting angle of 21 degrees, which is much smaller compared with the single molecule adsorption. The van der Waals interaction plays an important role in forming the SAM structure. The adsorption of benzenethiolates induces the repulsive interaction between surface Au atoms, which facilitates the formation of surface Au vacancy.  相似文献   

5.
We have used primarily temperature-programmed desorption (TPD) and infrared reflection-absorption spectroscopy (IRAS) to investigate CO adsorption on a Au(211) stepped single-crystal surface. The Au(211) surface can be described as a step-terrace structure consisting of three-atom-wide terraces of (111) orientation and a monatomic step with a (100) orientation, or 3(111) x (100) in microfacet notation. CO was only weakly adsorbed but was more strongly bound at step sites (12 kcal mol(-1)) than at terrace sites (6.5-9 kcal mol(-1)). The sticking coefficient of CO on the Au(211) surface was also higher ( approximately 5x) during occupation of step sites compared to populating terrace sites at higher coverages. The nu(CO) stretching band energy in IRAS spectra indicated that CO was adsorbed at atop sites at all coverages and conditions. A small red shift of nu(CO) from 2126 to 2112 cm(-1) occurred with increasing CO coverage on the surface. We conclude that the presence of these particular step sites at the Au(211) surface imparts stronger CO bonding and a higher reactivity than on the flat Au(111) surface, but these changes are not remarkable compared to chemistry on other more reactive crystal planes or other stepped Au surfaces. Thus, it is unlikely that the presence or absence of this particular crystal plane alone at the surface of supported Au nanoparticles has much to do with the remarkable properties of highly active Au catalysts.  相似文献   

6.
The potential-induced adsorption and self-assembly of 1,3,5-benzene-tricarboxylic acid (TMA) was investigated at the electrified Au(111)/0.05 M H2SO4 interface by in-situ scanning tunneling microscopy (STM) and surface enhanced infrared reflection absorption spectroscopy (SEIRAS) in combination with electrochemical techniques. Depending on the applied electric field, TMA forms five distinctly different, highly ordered supramolecular adlayers on Au(111) surfaces. We have elucidated their real-space structures at the molecular scale. In the potential range -0.25 V < E < 0.20 V, planar-oriented TMA molecules form a hexagonal open-ring honeycomb structure, Ia, a hydrogen-bonded ribbon-type phase, Ib, and a herringbone-type phase, Ic, stabilized by directional hydrogen bonding and weak substrate-adsorbate interactions. Interfacial water molecules are being replaced. In 0.20 V < or = E < 0.40 V, e.g., around the potential of zero charge, and at slightly higher coverages, a close-packed physisorbed adlayer of hydrogen-bonded TMA dimers, II, was observed. Further increase of the electrode potential to positive charge densities causes an orientation change from planar to upright. An initially disordered phase, IIIa, transforms into an ordered, stripelike chemisorbed adlayer, IIIb, of perpendicularly oriented TMA molecules. One carboxylate group per molecule is bound to the electrode surface, while the two other protonated carboxyl groups are directed toward the electrolyte and act as structure-determining components of a hydrogen-bonded two-dimensional ladder-type network. Structural transitions between the various types of ordered molecular adlayers are attributed to (hole) nucleation and growth processes.  相似文献   

7.
Scanning tunneling microscopy (STM) and low-energy electron diffraction were used to reveal the structures of ordered adlayers of [2+2]-type C60-C60 fullerene dimer (C120) and C60-C70 cross-dimer (C130) formed on Au(111) by immersingit in abenzene solution containing C120 or C130 molecules. High-resolution STM images clearly showed the packing arrangements and the electronic structures of C120 and C130 on the Au(111) surface in ultrahigh vacuum. The (2 square root3 x 4square root3)R30 degrees, (2square root3 x 5square root3)R30 degrees, and (7 x 7) structures were found for the C120 adlayer on the Au(111) surface, whereas C130 molecules were closely packed on the surface. Each C60 or C70 monomer cage was discerned in the STM image of a C130 molecule.  相似文献   

8.
The derivatives of aromatic cores bearing alkyl chains with different lengths are of potential interest in on-surface chemistry, and thus have been widely investigated both at liquid-solid interfaces and in vacuum. Here, we report on the structural evaluation of self-assembled 1,3,5-tri(4-dodecylphenyl)benzene(TDPB) molecules with increased molecular coverages on both Au(111) and Cu(111) surfaces. As observed on Au(111), rhombic and herringbone structures emerge successively depending on surface coverage. In the case of Cu(111), the same process of phase conversion is also observed, but with two distinct structures. In comparison, the self-assembled structures on Au(111) surface are packed more densely than that on Cu(111) surface under the same preparation conditions. This may fundamentally result from the higher adsorption energy of TDPB molecules on Cu(111), restricting their adjustment to optimize a thermodynamically favorable molecular packing.  相似文献   

9.
Adsorption structures formed upon vapor deposition of the natural amino acid L-cysteine onto the (111) surface of gold have been investigated by scanning tunneling microscopy under ultrahigh vacuum conditions. Following deposition at room temperature and at cysteine coverages well below saturation of the first monolayer, we found coexistence of unordered molecular islands and extended domains of a highly ordered molecular overlayer of quadratic symmetry. As the coverage was increased, a number of other structures with local hexagonal order emerged and became dominant. Neither of the room temperature, as-deposited, ordered structures showed any fixed rotational relationship to the underlying gold substrate, suggesting a comparatively weak and nonspecific molecule-substrate interaction. Annealing of the cysteine-covered substrate to 380 K lead to marked changes in the observed adsorption structures. At low coverages, the unordered islands developed internal order and their presence started to perturb the appearance of the surrounding Au(111) herringbone reconstruction. At coverages beyond saturation of the first monolayer, annealing led to development of a ( radical3 x radical3)R30 degrees superstructure accompanied by the formation of characteristic monatomically deep etch pits, i.e., the behavior typically observed for alkanethiol self-assembled monolayers on Au(111). The data thus show that as-deposited and thermally annealed cysteine adsorption structures are quite different and suggest that thermal activation is required before vacuum deposited cysteine becomes covalently bound to single crystalline Au(111).  相似文献   

10.
The two-dimensional structures formed by monolayers and submonolayers of p-sexiphenyl (p-6P) molecules evaporated onto the Au(111) surface are investigated using ultrahigh vacuum scanning tunneling microscopy (UHV-STM). Five different 2D structures corresponding to different surface coverages are discovered and their 2D structures solved. The trends in the molecular alignment with respect to the underlying gold lattice are discussed. An unusual structure that consists of paired rows of p-6P molecules was discovered. A surface structure with alternating domains of slightly differently packed p-6P molecules was also found. The boundary between these two domains contains systematic molecular vacancies.  相似文献   

11.
A sulfur-containing single molecule magnet, [Mn12O12(O2CC6H4SCH3)16(H2O)4], was assembled from solution on a Au(111) surface affording both submonolayer and monolayer coverages. The adsorbate morphology and the degree of coverage were inspected by scanning tunneling microscopy (STM), while X-ray photoelectron spectroscopy (XPS) allowed the determination of the chemical nature of the adsorbate on a qualitative and quantitative basis. The properties of the adsorbates were found to be strongly dependent on the solvent used to dissolve the magnetic complex. In particular, systems prepared from tetrahydrofuran solutions gave arrays of isolated and partially ordered clusters on the gold substrate, while samples prepared from dichloromethane exhibited a homogeneous monolayer coverage of the whole Au(111) surface. These findings are relevant to the optimization of magnetic addressing of single molecule magnets on surfaces.  相似文献   

12.
In-situ scanning tunneling microscopy (STM) coupled with cyclic voltammetry was used to examine the adsorption of carbon monoxide (CO) molecules on an ordered Au(111) electrode in 0.1 M HClO4. Molecular resolution STM revealed the formation of several commensurate CO adlattices, but the (9 x radical 3) structure eventually prevailed with time. The CO adlayer was completely electrooxidized to CO2 at 0.9 V versus RHE in CO-free 0.1 M HClO(4), as indicated by a broad and irreversible anodic peak which appeared at this potential in a positive potential sweep from 0.05 to 1.6 V. A maximal coverage of 0.3 was estimated for CO admolecules from the amount of charge involved in this feature. Real-time in-situ STM imaging allowed direct visualization of the adsorption process of CO on Au(111) at 0.1 V, showing the lifting of (radical 3 x 22) reconstruction of Au(111) and the formation of ordered CO adlattices. The (9 x radical 3) structure observed in CO-saturated perchloric acid has a coverage of 0.28, which is approximately equal to that determined from coulometry. Switching the potential from 0.1 to -0.1 V restored the reconstructed Au(111) with no change in the (9 x radical 3)-CO adlattice. However, the reconstructed Au(111) featured a pairwise corrugation pattern with two nearest pairs separated by 74 +/- 1 A, corresponding to a 14% increase from the ideal value of 65.6 A known for the ( radical 3 x 22) reconstruction. Molecular resolution STM further revealed that protrusions resulting from CO admolecules in the (9 x radical 3) structure exhibited distinctly different corrugation heights, suggesting that the CO molecules resided at different sites on Au(111). This ordered structure predominated in the potential range between 0.1 and 0.7 V; however, it was converted into new structures of (7 x radical 7) and ( radical 43 x 2 radical 13) on the unreconstructed Au(111) when the potential was held at 0.8 V for ca. 60 min. The coverage of CO adlayer decreased accordingly from 0.28 to 0.13 before it was completely removed from the Au(111) surface at more positive potentials.  相似文献   

13.
A self-assembled monolayer of 1,10'-phenanthroline (phen) molecules on Au(111) was found to undergo a structural phase transition when the bias voltage is switched in scanning tunneling microscopy (STM) experiments (Phys. Rev. Lett. 1995, 75, 2376; Surf. Sci. 1997, 389, 19). The nature of two bright spots representing each phen molecule in the high-resolution STM images of phen molecules on Au(111) was identified by calculating the partial density plots for a monolayer of phen molecules adsorbed on Au(111) with tight-binding electronic structure calculations. The stacking pattern of chains of phen molecules on Au(111) was explained by studying the intermolecular interactions between phen molecules on the basis of first-principles electronic structure calculations for a phen dimer, (phen)(2). The structural instability of phen molecule arrangement caused by the bias-voltage switch was probed by estimating the adsorbate-surface interaction energy with the point-charge approximation for Au(111).  相似文献   

14.
Redox-responsive poly(ferrocenylsilane) (PFS) polymer molecules were attached individually to gold surfaces for force spectroscopy experiments on the single molecule level. By grafting ethylenesulfide-functionalized PFS into the defects of preformed self-assembled monolayers (SAMs) of different omega-mercaptoalkanols on Au(111), the surface coverage of PFS macromolecules could be conveniently controlled. Atomic force microscopy (AFM), contact angle, as well as cyclic and differential pulse voltammetry measurements were carried out to characterize the morphology, wettability, and surface coverage of the grafted layers. The values of the PFS surface coverage were found to depend on the chain length of the omega-mercaptoalkanol molecules and on the concentration of the PFS solution but not on the insertion time or on the molar mass of PFS. The equilibrium surface coverages were successfully described by Langmuir adsorption isotherms. For low-surface coverage values (< 6.2 x 10(-4) chain/nm2), achieved by PFS insertion from very dilute solutions (8 x 10(-6) M) into long-chain SAMs, AFM and differential pulse voltammetry showed that surfaces exposing isolated individual polymer chains were obtained. The isolated PFS macromolecules were subjected to in situ AFM-based single molecule force spectroscopy (SMFS) measurements. The single chain elasticity of PFS in isopropanol (and ethanol) was fitted with the modified freely jointed chain (m-FJC) model. This procedure yielded a Kuhn segment length of 0.33 +/- 0.05 nm and a segment elasticity of 32 +/- 5 nN/nm.  相似文献   

15.
The electronic and geometrical structure of single difluoro-bora-1,3,5,7-tetraphenyl-aza-dipyrromethene (aza-BODIPY) molecules adsorbed on the Au(111) surface is investigated by low temperature scanning tunneling microscopy and spectroscopy in conjunction with ab initio density functional theory simulations of the density of states and of the interaction with the substrate. Our DFT calculations indicate that the aza-bodipy molecule forms a chemical bond with the Au(111) substrate, with distortion of the molecular geometry and significant charge transfer between the molecule and the substrate. Nevertheless, most likely due to the low corrugation of the Au(111) surface, diffusion of the molecule is observed for applied bias in excess of 1 V.  相似文献   

16.
A detailed study of the self-assembly and coverage by 1-nonanethiol of sputtered Au surfaces using molecular resolution atomic force microscopy (AFM) and scanning tunneling microscopy (STM) is presented. The monolayer self-assembles on a smooth Au surface composed predominantly of [111] oriented grains. The domains of the alkanethiol monolayer are observed with sizes typically of 5-25 nm, and multiple molecular domains can exist within one Au grain. STM imaging shows that the (4 x 2) superlattice structure is observed as a (3 x 2) structure when imaged under noncontact AFM conditions. The 1-nonanethiol molecules reside in the threefold hollow sites of the Au[111] lattice and aligned along its [112] lattice vectors. The self-assembled monolayer (SAM) contains many nonuniformities such as pinholes, domain boundaries, and monatomic depressions which are present in the Au surface prior to SAM adsorption. The detailed observations demonstrate limitations to the application of 1-nonanethiol as a resist in atomic nanolithography experiments to feature sizes of approximately 20 nm.  相似文献   

17.
Adlayers of 15-crown-5-ether-substituted cobalt(II) phthalocyanine (CoCRPc) were prepared by immersion of either Au(111) or Au(100) substrate into benzene-ethanol (9:1 v/v) mixed solutions containing CoCRPc. In situ STM imaging was carried out after transferring the CoCRPc-modified Au crystals into aqueous HClO(4) solution. The packing arrangement of the CoCRPc array on Au(111) was determined to be p(8 x 4 radical 3R - 30 degrees ), and the internal structure was clearly observed by high-resolution STM. Two adlayer structures of CoCRPc, (8 x 9) and (4 radical 5 x 4 radical 5)R26.7 degrees, were found on the Au(100)-(1 x 1) terrace. In the presence of 1 mM Ca(2+), two Ca(2+) ions were trapped in two diagonally located 15-crown-5-ether moieties of each CoCRPc molecule on Au(111), whereas encapsulation of Ca(2+) ions was not seen in the CoCRPc arrays on the Au(100)-(1 x 1) surface. The present study demonstrates that the relationship between crown moieties of CRPc and the underlying Au lattice is important in the trapping of Ca(2+) ions in crown rings.  相似文献   

18.
The c(4 x 2) structure of C16H33SH alkanethiol monolayers self-assembled on Au(111) has been studied by grazing incidence X-ray diffraction. This structure coexists on the surface with the (radical3x radical3)R30 degrees phase. The structural refinement of the c(4 x 2) phase has been accomplished by omitting the fractional order reflections common to both structures. The surface unit cell consists of four symmetry-independent molecules with atomic displacements related by couples, such that only two nonequivalent chains are present in the surface cell. The stability between neighbor chains is due to van der Waals interactions. The substrate plays an important and non-negligible role in the c(4 x 2) reconstruction. The lateral and normal substrate relaxations to the surface plane are small, and gold atom displacements are lower than 0.25 angstroms but contribute very strongly to the fractional order intensities. The molecular chains form a close packed structure tilted by 37 degrees from the surface normal with no indications of dimer formation between closest S atoms.  相似文献   

19.
A detailed study on the time-dependent organization of a decanethiol self-assembled monolayer (SAM) at a designed solution concentration onto a Au(111) surface has been performed with scanning tunneling microscopy (STM). The SAMs were prepared by immersing Au(111) into an ethanol solution containing 1 microM decanethiol with different immersion times. STM images revealed the formation process and adlayer structure of the SAMs. It was found that the molecules self-organized into adlayers from random separation to a well-defined structure. From 10 s, small domains with ordered molecular organization appeared, although random molecules could be observed on Au(111) at the very initial stage. At 30 s, the SAM consisted of uniform short stripes. Each stripe consisted of sets of decanethiol mainly containing eight molecules. With the immersion time increasing, the length of the stripes increased. At 5 min, the alkyl chains overlapped each other between the adjacent stripes, indicating the start of a stacked process. After immersing Au(111) in decanethiol solution for 3 days, a densely packed adlayer with a (radical 3 x radical 3)R30 degrees structure was observed. The formation process and structure of decanethiol SAMs are well related to sample preparation conditions. The wettability of the decanethiolate SAM-modified Au(111) surface was also investigated.  相似文献   

20.
Two-component adlayers consisting of cobalt(II) phthalocyanine (CoPc) and a metalloporphyrin such as 5,10,15,20-tetraphenyl-21H,23H-porphine copper(II) (CuTPP), 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine copper(II) (CuOEP), or 5,10,15,20-tetraphenyl-21H,23H-porphine cobalt(II) (CoTPP) were prepared by immersing either an Au(111) or Au(100) substrate in a benzene solution containing those molecules. The mixed adlayers thus prepared were investigated in 0.1 M HClO4 by cyclic voltammetry (CV) and in situ scanning tunneling microscopy (STM). The composition of the mixed adlayer consisting of CoPc and CuTPP molecules was found to vary with immersion time. CoPc molecules displaced CuTPP molecules during the modification process with increasing immersion time, and the CuTPP molecules were completely displaced by CoPc molecules in the mixed solution after a prolonged modification time, during which the underlying Au(100) substrate underwent phase transition from the reconstructed (hex) lattice to the unreconstructed (1 x 1) lattice. The two-component adlayer of CoPc and CuTPP was found to form a supramolecular adlayer with the constituent molecules arranged alternately on Au(100)-(hex). The striped structure was stable on Au(100)-(hex) at or near the open circuit potential (OCP), whereas the mixed adlayer was disordered on Au(100)-(1 x 1) at potentials more positive than OCP, where the phase transition of the arrangement of underlying Au atoms (i.e., the lifting of reconstruction) was induced electrochemically. A similar two-component supramolecular adlayer consisting of CoPc and CuTPP was formed on Au(111). A highly ordered, compositionally disordered adlayer of CoTPP and CuTPP was formed on Au(100)-(hex), suggesting that the adlayer structure is independent of the coordinated central metal ion for the formation of supramolecular nanostructures composed of those molecules. A supramolecular organization of CoPc and CuOEP was also found on Au(111). The surface mobility and the molecular reorganization of CoPc and CuOEP on Au(111) were tuned by modulation of the electrode potential. It is concluded that molecular assemblies of the two-component structure consisting of phthalocyanine and porphyrin were controlled not only by the crystallographic orientation of Au but also by the modulation of electrochemical potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号