首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This paper is devoted to the study of optimal solutions of symmetric cone programs by means of the asymptotic behavior of central paths with respect to a broad class of barrier functions. This class is, for instance, larger than that typically found in the literature for semidefinite positive programming. In this general framework, we prove the existence and the convergence of primal, dual and primal–dual central paths. We are then able to establish concrete characterizations of the limit points of these central paths for specific subclasses. Indeed, for the class of barrier functions defined at the origin, we prove that the limit point of a primal central path minimizes the corresponding barrier function over the solution set of the studied symmetric cone program. In addition, we show that the limit points of the primal and dual central paths lie in the relative interior of the primal and dual solution sets for the case of the logarithm and modified logarithm barriers.  相似文献   

2.
《Optimization》2012,61(2):207-233
Abstract

In this paper we study the welldefinedness of the central path associated to a nonlinear convex semidefinite programming problem with smooth objective and constraint functions. Under standard assumptions, we prove that the existence of the central path is equivalent to the nonemptiness and boundedness of the optimal set. Other equivalent conditions are given, such as the existence of a strictly dual feasible point or the existence of a single central point. The monotonic behavior of the primal and dual logarithmic barriers and of the primal and dual objective functions along the trajectory is also discussed. The existence and optimality of cluster points is established and finally, under the additional assumption of analyticity of the data functions, the convergence of the primal-dual trajectory is proved.  相似文献   

3.
The purpose of this paper is two-fold. Firstly, we show that every Cholesky-based weighted central path for semidefinite programming is analytic under strict complementarity. This result is applied to homogeneous cone programming to show that the central paths defined by the known class of optimal self-concordant barriers are analytic in the presence of strictly complementary solutions. Secondly, we consider a sequence of primal–dual solutions that lies within a prescribed neighborhood of the central path of a pair of primal–dual semidefinite programming problems, and converges to the respective optimal faces. Under the additional assumption of strict complementarity, we derive two necessary and sufficient conditions for the sequence of primal–dual solutions to converge linearly with their duality gaps. This research was supported by a grant from the Faculty of Mathematics, University of Waterloo and by a Discovery Grant from NSERC.  相似文献   

4.
In this paper we study the properties of the analytic central path of a semidefinite programming problem under perturbation of the right hand side of the constraints, including the limiting behavior when the central optimal solution, namely the analytic center of the optimal set, is approached. Our analysis assumes the primal-dual Slater condition and the strict complementarity condition. Our findings are as follows. First, on the negative side, if we view the central optimal solution as a function of the right hand side of the constraints, then this function is not continuous in general, whereas in the linear programming case this function is known to be Lipschitz continuous. On the positive side, compared with the previous conclusion we obtain a (seemingly) paradoxical result: on the central path any directional derivative with respect to the right hand side of the constraints is bounded, and even converges as the central optimal solution is approached. This phenomenon is possible due to the lack of a uniform bound on the derivatives with respect to the right hand side parameters. All these results are based on the strict complementarity assumption. Concerning this last property we give an example. In that example the set of right hand side parameters for which the strict complementarity condition holds is neither open nor closed. This is remarkable since a similar set for which the primal-dual Slater condition holds is always open. Received: April 2, 1998 / Accepted: January 16, 2001?Published online March 22, 2001  相似文献   

5.
We consider a primal optimization problem in a reflexive Banach space and a duality scheme via generalized augmented Lagrangians. For solving the dual problem (in a Hilbert space), we introduce and analyze a new parameterized Inexact Modified Subgradient (IMSg) algorithm. The IMSg generates a primal-dual sequence, and we focus on two simple new choices of the stepsize. We prove that every weak accumulation point of the primal sequence is a primal solution and the dual sequence converges weakly to a dual solution, as long as the dual optimal set is nonempty. Moreover, we establish primal convergence even when the dual optimal set is empty. Our second choice of the stepsize gives rise to a variant of IMSg which has finite termination.  相似文献   

6.
In this paper we develop a primal-dual subgradient algorithm for preferably decomposable, generally nondifferentiable, convex programming problems, under usual regularity conditions. The algorithm employs a Lagrangian dual function along with a suitable penalty function which satisfies a specified set of properties, in order to generate a sequence of primal and dual iterates for which some subsequence converges to a pair of primal-dual optimal solutions. Several classical types of penalty functions are shown to satisfy these specified properties. A geometric convergence rate is established for the algorithm under some additional assumptions. This approach has three principal advantages. Firstly, both primal and dual solutions are available which prove to be useful in several contexts. Secondly, the choice of step sizes, which plays an important role in subgradient optimization, is guided more determinably in this method via primal and dual information. Thirdly, typical subgradient algorithms suffer from the lack of an appropriate stopping criterion, and so the quality of the solution obtained after a finite number of steps is usually unknown. In contrast, by using the primal-dual gap, the proposed algorithm possesses a natural stopping criterion.  相似文献   

7.
We observe a curious property of dual versus primal-dual path-following interior-point methods when applied to unbounded linear or conic programming problems in dual form. While primal-dual methods can be viewed as implicitly following a central path to detect primal infeasibility and dual unboundedness, dual methods can sometimes implicitly move away from the analytic center of the set of infeasibility/unboundedness detectors. Dedicated to Clovis Gonzaga on the occassion of his 60th birthday.  相似文献   

8.
A primal-dual version of the proximal point algorithm is developed for linearly constrained convex programming problems. The algorithm is an iterative method to find a saddle point of the Lagrangian of the problem. At each iteration of the algorithm, we compute an approximate saddle point of the Lagrangian function augmented by quadratic proximal terms of both primal and dual variables. Specifically, we first minimize the function with respect to the primal variables and then approximately maximize the resulting function of the dual variables. The merit of this approach exists in the fact that the latter function is differentiable and the maximization of this function is subject to no constraints. We discuss convergence properties of the algorithm and report some numerical results for network flow problems with separable quadratic costs.  相似文献   

9.
In this article, we investigate the convergence properties of a stochastic primal-dual splitting algorithm for solving structured monotone inclusions involving the sum of a cocoercive operator and a composite monotone operator. The proposed method is the stochastic extension to monotone inclusions of a proximal method studied in the literature for saddle point problems. It consists in a forward step determined by the stochastic evaluation of the cocoercive operator, a backward step in the dual variables involving the resolvent of the monotone operator, and an additional forward step using the stochastic evaluation of the cocoercive operator introduced in the first step. We prove weak almost sure convergence of the iterates by showing that the primal-dual sequence generated by the method is stochastic quasi-Fejér-monotone with respect to the set of zeros of the considered primal and dual inclusions. Additional results on ergodic convergence in expectation are considered for the special case of saddle point models.  相似文献   

10.
We present a primal-dual row-action method for the minimization of a convex function subject to general convex constraints. Constraints are used one at a time, no changes are made in the constraint functions and their Jacobian matrix (thus, the row-action nature of the algorithm), and at each iteration a subproblem is solved consisting of minimization of the objective function subject to one or two linear equations. The algorithm generates two sequences: one of them, called primal, converges to the solution of the problem; the other one, called dual, approximates a vector of optimal KKT multipliers for the problem. We prove convergence of the primal sequence for general convex constraints. In the case of linear constraints, we prove that the primal sequence converges at least linearly and obtain as a consequence the convergence of the dual sequence.The research of the first author was partially supported by CNPq Grant No. 301280/86.  相似文献   

11.
In this paper, we present a simpler proof of the result of Tsuchiya and Muramatsu on the convergence of the primal affine scaling method. We show that the primal sequence generated by the method converges to the interior of the optimum face and the dual sequence to the analytic center of the optimal dual face, when the step size implemented in the procedure is bounded by 2/3. We also prove the optimality of the limit of the primal sequence for a slightly larger step size of 2q/(3q–1), whereq is the number of zero variables in the limit. We show this by proving the dual feasibility of a cluster point of the dual sequence.Partially supported by the grant CCR-9321550 from NSF.  相似文献   

12.
In this paper, we consider a least square semidefinite programming problem under ellipsoidal data uncertainty. We show that the robustification of this uncertain problem can be reformulated as a semidefinite linear programming problem with an additional second-order cone constraint. We then provide an explicit quantitative sensitivity analysis on how the solution under the robustification depends on the size/shape of the ellipsoidal data uncertainty set. Next, we prove that, under suitable constraint qualifications, the reformulation has zero duality gap with its dual problem, even when the primal problem itself is infeasible. The dual problem is equivalent to minimizing a smooth objective function over the Cartesian product of second-order cones and the Euclidean space, which is easy to project onto. Thus, we propose a simple variant of the spectral projected gradient method (Birgin et al. in SIAM J. Optim. 10:1196–1211, 2000) to solve the dual problem. While it is well-known that any accumulation point of the sequence generated from the algorithm is a dual optimal solution, we show in addition that the dual objective value along the sequence generated converges to a finite value if and only if the primal problem is feasible, again under suitable constraint qualifications. This latter fact leads to a simple certificate for primal infeasibility in situations when the primal feasible set lies in a known compact set. As an application, we consider robust correlation stress testing where data uncertainty arises due to untimely recording of portfolio holdings. In our computational experiments on this particular application, our algorithm performs reasonably well on medium-sized problems for real data when finding the optimal solution (if exists) or identifying primal infeasibility, and usually outperforms the standard interior-point solver SDPT3 in terms of CPU time.  相似文献   

13.
We are motivated by the problem of constructing aprimal-dual barrier function whose Hessian induces the (theoreticallyand practically) popular symmetric primal and dual scalings forlinear programming problems. Although this goal is impossible toattain, we show that the primal-dual entropy function may provide asatisfactory alternative. We study primal-dual interior-pointalgorithms whose search directions are obtained from a potentialfunction based on this primal-dual entropy barrier. We providepolynomial iteration bounds for these interior-point algorithms. Thenwe illustrate the connections between the barrier function and areparametrization of the central path equations. Finally, we considerthe possible effects of more general reparametrizations oninfeasible-interior-point algorithms.  相似文献   

14.
We apply a modified subgradient algorithm (MSG) for solving the dual of a nonlinear and nonconvex optimization problem. The dual scheme we consider uses the sharp augmented Lagrangian. A desirable feature of this method is primal convergence, which means that every accumulation point of a primal sequence (which is automatically generated during the process), is a primal solution. This feature is not true in general for available variants of MSG. We propose here two new variants of MSG which enjoy both primal and dual convergence, as long as the dual optimal set is nonempty. These variants have a very simple choice for the stepsizes. Moreover, we also establish primal convergence when the dual optimal set is empty. Finally, our second variant of MSG converges in a finite number of steps.  相似文献   

15.
This paper is concerned with a primal–dual interior point method for solving nonlinear semidefinite programming problems. The method consists of the outer iteration (SDPIP) that finds a KKT point and the inner iteration (SDPLS) that calculates an approximate barrier KKT point. Algorithm SDPLS uses a commutative class of Newton-like directions for the generation of line search directions. By combining the primal barrier penalty function and the primal–dual barrier function, a new primal–dual merit function is proposed. We prove the global convergence property of our method. Finally some numerical experiments are given.  相似文献   

16.
A local analysis of the Iri-Imai algorithm for linear programming is given to demonstrate quadratic convergence under degeneracy. Specifically, we show that the algorithm with an exact line search either terminates after a finite number of iterations yielding a point on the set of optimal solutions or converges quadratically to one of the relative analytic centers of the faces of the set of optimal solutions including vertices. Mostly, the sequence generated falls into one of the optimal vertices, and it is rare that the sequence converges to the relative analytic center of a face whose dimension is greater than or equal to one.This paper is based on Ref. 1.The author thanks Professor Kunio Tanabe of the Institute of Statistical Mathematics for valuable comments as well as stimulating discussions.  相似文献   

17.
In this paper, we study the weak sharpness of the solution set of variational inequality problem (in short, VIP) and the finite convergence property of the sequence generated by some algorithm for finding the solutions of VIP. In particular, we give some characterizations of weak sharpness of the solution set of VIP without considering the primal or dual gap function. We establish an abstract result on the finite convergence property for a sequence generated by some iterative methods. We then apply such abstract result to discuss the finite termination property of the sequence generated by proximal point method, exact proximal point method and gradient projection method. We also give an estimate on the number of iterates by which the sequence converges to a solution of the VIP.  相似文献   

18.
In this paper we list several useful properties of central points in linear programming problems. We study the logarithmic barrier function, the analytic center and the central path, relating the proximity measures and scaled Euclidean distances defined for the primal and primal–dual problems. We study the Newton centering steps, and show how large the short steps used in path following algorithms can actually be, and what variation can be ensured for the barrier function in each iteration of such methods. We relate the primal and primal–dual Newton centering steps and propose a primal-only path following algorithm for linear programming.  相似文献   

19.
In this paper we present penalty and barrier methods for solving general convex semidefinite programming problems. More precisely, the constraint set is described by a convex operator that takes its values in the cone of negative semidefinite symmetric matrices. This class of methods is an extension of penalty and barrier methods for convex optimization to this setting. We provide implementable stopping rules and prove the convergence of the primal and dual paths obtained by these methods under minimal assumptions. The two parameters approach for penalty methods is also extended. As for usual convex programming, we prove that after a finite number of steps all iterates will be feasible.  相似文献   

20.
We consider the logarithmic and the volumetric barrier functions used in interior point methods. In the case of the logarithmic barrier function, the analytic center of a level set is the point at which the central path intersects that level set. We prove that this also holds for the volumetric path. For the central path, it is also true that the analytic center of the optimal level set is the limit point of the central path. The only known case where this last property for the logarithmic barrier function fails occurs in case of semidefinite optimization in the absence of strict complementarity. For the volumetric path, we show with an example that this property does not hold even for a linear optimization problem in canonical form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号