首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes of Cu(II) and Co(II) nitrates with 3-phenyl-5,5-dimethyl-5,6-dihydro-1,2,4-triazolo[3,4-a]isoquinoline (L0) of the composition [CuL 2 0 (NO3)2] (I) and [CoL 2 0 (NO3)2] · CH3CN (II) are synthesized and their crystal structures are determined by X-ray diffraction. The L0 ligand is coordinated to the metal atoms through the N atom in position 2 of triazole fragment. The coordination polyhedron of the Cu(II) atom is a square with two additional axial vertices, while that of the Co(II) atom is a tetrahedron with two additional vertices. The NO 3 ? groups in the structures of I and II perform similar anisobidentate function. Complexes I and II are studied by IR and electronic spectroscopy.  相似文献   

2.
The crystals of [Co(CH2CH2CH2NH2)(En)2]Br2 (I) and [Co(Bipy)(Cl)(Edma)]Cl · 2H2O (IIa) (IIa) are studied by X-ray diffraction analysis. Compound I is synthesized by the crystallization of the [Co(En)2(Amb)]2+ primary photolysis products. Compound IIa is synthesized from the [Co(Bipy)(Edda)]+ final photolysis products (En is ethylenediamine; Bipy is 2,2′-bipyridine; Edma and Edda are the anions of ethylenediaminemonoacetic and ethylenediamine-N,N′-diacetic acids, respectively; Amb is the 4-aminobutyrate ion). The crystal structure of complex I indicates the contraction of the seven-membered aminobutyrate CoO2CCH2CH2CH2NH2 ring to the five-membered CoCH2CH2CH2NH2 ring by the photoelimination of the CO2 molecule. The formation of the Co(III) complexes with the Edma ligands upon the photolysis of [Co(Bipy)(Edda)]+ is due to successive reactions of contraction of the five-membered aminoacetate rings and hydrolysis of the Co-C bond.  相似文献   

3.
On photolysis of acetyl chloride (wave length 254 nm) in ethereal solution the main product is 3-ethoxy-2-butanone (1). The by-products are 2.3-diethoxy-butane (3), butane-2.3-dione, ethyl acetate and 3-acetoxy-2-butanone.1 is formed by the substitution of ether by the radical pair (CH3CO·· Cl) within the solvent cage. Diffusion of the radical pair from the cage causes H-abstraction from the ether forming the α-ether radical2. The letter combines to3. The ratio of1 to3 depends on temperature.  相似文献   

4.
Two compounds, 7,13,16,21,24-hexaoxa-1,10-diazoniabicyclo[8.8.8]hexacosane bis(tribromide) and bis(bromodiiodide) — [H2(Crypt-222)]2+·2Br 3 ? (I) and [H2(Crypt-222)]2+·1.45(BrI2)?·0.4(Br2I)?·0.15 I 3 ? (II) — are prepared and characterized by single crystal XRD; the refinement of the second compound was more accurate. Isomorphous monoclinic structures (I, space group C2/c, Z = 4, a = 12.090, b = 15.833 Å, c = 15.732 Å, β = 95.83°; II, a = 12.548 Å, b = 16.417 Å, c = 15.748 Å, β = 94.53°) are solved by a direct method and refined in the anisotropic full-matrix approximation to R = 0.057 (I) and 0.044 (II) using all 2635 (I) and 2852 (II) measured independent reflections (automated CAD-4 diffractometer, λMoK α). In the structures of I and II one of the trihalide anions sits at the inversion center i(000), and the second trihalide anion and the dication [H2(Crypt-222)]2+ are situated at crystallographic axis 2. In the structure of II iodine is located in the center of trihalide anions, while the terminal atoms are disordered and are represented by a statistical combination of iodine and bromine atoms.  相似文献   

5.
Tetraamminecobalt hydrogen hexamolybdoferrate [Co(NH3)4] · H[FeMo6O18(OH)6] · 6H2O (I) and tetraamminecobalt hydrogen hexamolybdogallate(III) [Co(NH3)4] · H[GaMo6O18(OH)6] · 6H2O (II) were synthesized and studied by mass spectrometry, thermogravimetry, IR spectroscopy, and X-ray diffraction. Crystals of I and II are monoclinic; a = 16.21 Å, b = 5.43 Å, c = 12.32 Å, β = 119.63°, V = 1092.11 Å3, ρcalcd = 2.21 g/cm3, and Z = 1 for I; a = 16.24 Å, b = 5.59 Å, c = 12.29 Å, β = 119.79°, V = 1064.05 Å3, ρcalcd = 2.15 g/cm3, and Z = 1 for II. Compounds I and II were used as catalysts for soft oxidation of natural gas.  相似文献   

6.
Cs3[UO2(CH3COO)3]2[UO2(CH3COO)(NCS)2(H2O)] (I) and Cs5[UO2(CH3COO)3]3[UO2 (NCS)4(H2O)] · 2H2O (II) have been synthesized via the reaction between uranyl acetate and cesium thiocyanate in aqueous solution. According to single-crystal X-ray diffraction data, both compounds crystallize in monoclinic system with the unit cell parameters a = 18.7036(5) Å, b = 16.7787(3) Å, c = 12.9636(3) Å, β = 92.532(1)°, space group C2/c, Z = 4, R = 0.0434 (I); and a = 21.7843(3) Å, b = 24.6436(5) Å, c = 13.1942(2) Å, β = 126.482(1)°, space group Cc, Z = 4, R = 0.0273 (II). Uranium-containing structural units of compound (I) are mononuclear [UO2(CH3COO)3]? and [UO2(CH3COO)(NCS)2(H2O)]? moieties, which correspond to the AB 3 01 and AB01M 3 1 crystallochemical groups (A = UO 2 2+ , B01 = CH3COO?, M1 = NCS? and H2O). The structure of compound II is built of [UO2(CH3COO)3]? and [UO2(NCS)4(H2O)]2? complexes, which belong to the AB 3 01 and AM 5 1 crystallochemical groups, respectively. Uranium-containing complexes in both structures are linked into a framework by hydrogen bonds and electrostatic interactions with cesium cations. The IR spectra of compounds I and II agree well with X-ray diffraction data.  相似文献   

7.
Two novel homobinuclear ytterbium(III) complexes, [Yb2(2AMB)6(H2O)4] · 2C2H6O (I) and Yb2(3AMB)6(H2O)4] · 3H2O (II) (2AMB = 2-aminobenzoic acid, 3AMB = 3-aminobenzoic acid) have been synthesized and characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis and X-ray crystallography (CIF files CCDC nos. 950103 (I), 921652 (II)). Complex I crystallizes in triclinic space group \(P\bar 1\) and complex II crystallizes in monoclinic space group P21/n. X-ray analysis shows that both complexes (I, II) have the dinuclear structure. The central Yb3+ ions in both complexes are eight-coordinated adopting distorted YbO8 dodecahedral geometry. Each Yb3+ ion is coordinated to two O atoms from bridging carboxylate, four O atoms from the chelating carboxylate ligands and two O atoms of water molecules. The crystal structure of I and II are stabilized by N-H…O, O-H…O, O-H…N, and C-H…O hydrogen bonds, C-H…π interactions and weak π-π stacking interactions.  相似文献   

8.
The ion mobility in new fluoride glasses (mol %) 45ZrF4 · 25BiF3 · 30MF (I) (M = Li, Na, K), (70 - x)ZrF4 · xBiF3 · 30LiF (II) (15 ≤ x ≤ 35), and 45ZrF4 · (55-x)BiF3 · xMF (III) (M = Li, Na; 10 ≤ x ≤ 30) has been studied by 7Li, 19F, and 23Na NMR in the temperature range 250–500 K. The character of ion motion in bismuth fluorozirconate glasses I and III is determined by temperature and the nature and concentration of an alkali-metal cation. Major type of ion mobility in glasses I–III at temperature 400–440 K are local motions of fluorine-containing moieties and diffusion of lithium ions (except for the glass with x = 10). The factors responsible for diffusion in the fluoride sublattice of glasses I have been determined. Sodium ions in glasses I and III are not involved in ion transport.  相似文献   

9.
It has been shown that N,N’-diaryldiaza-18-crown-6 ethers with p-dimethylamino-and p-methoxy groups in the benzene ring (aryl is 4-Mc2NC6H4) (I) and 4-MeOC6H4 (II) form complexes with potassium and barium salts. The influence of these salts on the UV and 1H NMR spectra of crown ethers I and II has been studied. The stability constants (logβ) of the complexes increase in the series II · Ba(ClO4)2 (2.0), I · Ba(ClO4)2 (2.3), II · KBr (2.8), I · KBr (3.0). N,N’-bis(4-dimethylphenylamine)diaza-18-crown-6 (L, I) and its complex with barium perchlorate Ba(ClO4)2 · L (III) are characterized by X-ray crystallography. The crystals of I are monoclinic: a = 13.778(2) Å, b = 5.9731(9) Å, c = 17.542(3) Å, β = 106.65(1)°, V = 1383.1(4) Å3, Z = 2, space group P21/n, R = 0.0374 for 990 reflections with I > 2σ(I). The crystals of III are monoclinic: a = 17.275(4) Å, b = 8.017(2) Å, c = 26.935(4) Å, β = 100.47(2)°, V = 3669(1) Å3, Z = 4, space group C2/c, R = 0.0320 for 1897 reflections with I > 2σ(I). The molecules of I and III are centrosymmetric. In III, the Ba atom is in the center of substituted diaza-18-crown-6 (DA18C6). The Ba atom is coordinated by all six donor atoms of diaza-18-crown-6 (av. Ba-O, 2.779(3) Å; Ba-N, 3.004(4) Å) and four oxygen atoms of two asymmetrically bound perchlorate groups (Ba-O, 2.832(4) and 3.031(4) Å) arranged below and above the plane of substituted diaza-18-crown-6. The conformations of the macrocycle in free and coordinated L are different.  相似文献   

10.
Reactions of freshly precipitated binuclear zinc dimethyldithiocarbamate with [AuCl4]? anions in 2 M HCl were studied. The heteropolynuclear complex [Au2{S2CN(CH3)2}4][ZnCl4] (I) and the polymeric heterovalent complex ([Au{S2CN(CH3)2}2][AuCl2]) n (II) were preparatively isolated from the chemisorption system [Zn2{S2CN(CH3)2}4]-Au3+/2 M HCl. The products were characterized by 13C MAS NMR data and by X-ray diffraction determination of crystal and molecular structures. The principal structural units of compounds I and II are the tetragonal planar complex cations [Au{S2CN(CH3)2}2]+ (in which the complex-forming ion coordinates two MDtc ligands in the S,S′-bidentate mode) and the anions, namely, the distorted tetrahedral anion [ZnCl4]2? in I and the linear [AuCl2]? anion in II. The further structural self-organization of complexes at the supramoleular level occurs through relatively weak secondary bonds Au?S and Au?Cl. The chemisorption capacities of zinc dimethyldithiocarbamate calculated from gold(III)-binding reactions are 644.1 and 1288.2 mg of gold per gram of the sorbent. Simultaneous thermal analysis studies of the thermal behavior of I and II were used to elucidate the conditions of gold recovery.  相似文献   

11.
Two new complexes were synthesized, namely, 7: 2 (2.2.2-cryptand)potassium chloride and (2.2.2-cryptand)ammonium bromide(0.75)chloride(0.25) hydrates: [M(Crypt-222)]+ · Hal? · 3.5H2O, where M = K, Hal = Cl (I) and M = NH4, Hal = Br0.75Cl0.25 (II). The structures of two isomorphous crystals were studied by X-ray diffraction analysis. Trigonal (space group P \(\bar 3\), Z = 2) structures I (a = 11.763 Å, c = 11.262 Å) and II (a = 11.945 Å, c = 11.337 Å) were solved by direct methods and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.057 (I) and 0.065 (II) for all 2626 (I) and 1654 (II) independent measured reflections (CAD-4 automated diffractometer, λMoK α). In structures I and II, the host-guest [M(Crypt-222)]+ complex cation lies on the threefold crystallographic axis and has the approximate D 3 symmetry. In complex I, the coordination polyhedron of the K+ cation (CN = 8) is a bicapped trigonal prism somewhat distorted toward an antiprism. Complexes I and II contain H-bonded disordered cubes of the water molecules and the Cl? or Br? anions.  相似文献   

12.
The reactions of sodium and thallium catecholates CatM2 (Cat is the 3,6-di-tert-butylpyrocatechol dianion; M = Na, T1) with tin diphenyl dichloride afford new tin catecholate complexes Ph2SnCat · THF (I) and Ph2SnCat (II). The molecular structure of pentacoordinated complex I is determined by X-ray diffraction analysis. The synthesized complexes are capable of fixating both short-lived (PhC(O)O., (CH3)2NC(S)S., and NC(CH3)2C.) and stable free radicals (aroxyl, nitroxyl, triphenylmethyl, and phenoxazinyl) to form stable o-semiquinone tin derivatives.  相似文献   

13.
[Ph3PhCH2P]+[PdCl3(DMSO)]? · DMSO (I), [Ph4P]+[PdCl3(DMSO)]? (II), and [Ph4Sb(DMSO)]+[PdCl3(DMSO)]? (III) complexes have been synthesized via the reaction of palladium chloride with equimolar amounts of triphenylbenzylphosphonium chloride, tetraphenylphosphonium chloride, and tetraphenylstibonium chloride, respectively. According to X-ray diffraction data, the cations of complexes I (CPC = 104.90(8)°–111.61(9)°) and II (CPC = 105.12(10)°–111.46(10)°) have slightly distorted tetrahedral structures with P-C bond lengths of 1.786(2)–1.809(2) and 1.791(2)–1.799(2) Å, respectively. The antimony atom in the [Ph4Sb(DMSO)]+ cation has a trigonal bipyramidal surrounding with the dimethyl sulfoxide (DMSO) oxygen atom in an axial position (Sb...O 2.567(2) Å). The palladium atoms in the square mononuclear anions of complexes I, II, and III are tetracoordinate, and Pd-Cl distances are 2.3101(5)–2.3104(5) Å, 2.2950(7)–2.2038(7) Å, and 2.2986(9)–2.3073(9) Å, respectively. The DMSO ligands are coordinated to the palladium atom through the sulfur atom (Pd-S, 2.2318(5) (I), 2.2383(6) (II), and 2.2410(9) Å (III)).  相似文献   

14.
Alternating-current electrochemical synthesis is used to obtain for the first time halogenocuprates of an allyl derivative of phosphonium of the composition (CH2=CHCH2(C6H5)3P)CuX2 (X = Br (I), Cl (II)). Compound I crystallizes in the space group P21, a = 9.6341(3) Å, b = 12.4167(4) Å, c = 9.9618(4) Å, β = 117.484(5)°, Z = 2. Compound II crystallizes in the space group P21/n, a = 9.9725(5) Å, b = 15.4586(8) Å, c = 13.7557(5) Å, β = 90.429(4)°, Z = 4. In the structures of I and II quasilinear CuX 2 ? anions are held by C-H…X hydrogen bonds inside a framework formed by the stacking of phenyl groups from CH2=CHCH2(C6P5)3P+ cations. Allyl groups are not involved in coordination with copper(I) atoms.  相似文献   

15.
The ionic complexes simultaneously containing negatively charged coordination structures of metal phthalocyanines and fullerene anions, viz., {MnIIPc(CH3CH2S?) x ·(I?)1?x }·(C60 ·?)· ·(PMDAE+)2·C6H4Cl2 (PMDAE is N,N,N′,N′,N′-pentamethyldiaminoethane, x = 0.87, 1) and {ZnIIPc(CH3CH2S?)y·(I?)1?y }2·(C60 ?)2·(PMDAE+)4·(C6H4Cl2) (y = 0.5, 2) were synthesized. The both compounds were obtained as single crystals, which made it possible to study their crystal structures. In complex 1, the fullerene radical anions form honeycomb-like layers in which each fullerene has three neighbors with center-to-center interfullerene distances of 10.13–10.29 Å. Rather long distances between the C60 ·? radical anions results in the retention of monomeric C60 ·? in this complex down to the temperature of 110(2) K. In complex 2, fullerenes form dimers (C60 ?)2 bonded by one C-C bond. The dimers are packed in corrugated honeycomb-like layers with interfullerene center-to-center distances of 9.90–10.11 Å. Manganese(II) and zinc(II) phthalocyanines coordinate iodide and ethanethiolate anions to the central metal atom to form unusual negatively charged coordination structures MIIPc(An?) (An? is anion) packed in dimers {MIIPc(An?)}2 with a short distance between the phthalocyanine planes (3.14 Å in 1 and 3.27 Å in 2). The pthalocyanine dimers also form layers with the PMDAE+ cations, and these layers alternate with the fullerene layers. The packing of spherical fullerenes with planar phthalocyanine molecules is attained by the insertion of fullerenes between the phenylene groups of phthalocyanines. The π-π-interactions of the porphyrin macrocycle with five- or six-membered fullerene rings are characteristic of the earlier studied ionic porphyrin and fullerene complexes. Such interactions are not observed for ionic complexes 1 and 2.  相似文献   

16.
Four 3d-4f heterometallic complexes, [CuⅡ LnⅢ (bpt) 2 (NO 3 ) 3 (MeOH)] (Ln = Gd, 1; Dy, 2; bptH = 3,5-bis(pyrid-2-yl)-1,2,4- triazole), [CuⅡ 2 LnⅢ 2 (μ-OH) 2 (bpt) 4 Cl 4 (H 2 O) 2 ]·6H 2 O (Ln = Gd, 3; Dy, 4), have been synthesized under solvothermal conditions. X-ray structural analyses reveal that 1 and 2 are isostructural while 3 and 4 are isostructural. In each complex, the copper and gadolinium or dysprosium ions are linked by two triazolate bridges and form a CuⅡ -LnⅢ dinuclear unit. The intramolecular Cu-Ln distances are 4.542, 4.525, 4.545 and 4.538 for 1, 2, 3 and 4, respectively. Two dinuclear CuLn units are bridged by two OH- groups into the zig-zag tetranuclear {CuⅡ 2 LnⅢ 2 } structures with the Ln(Ⅲ) Ln(Ⅲ) distances of 3.742 and 3.684 for 3 and 4, respectively. Magnetic studies show that the antiferromagnetic CuⅡ-LnⅢ interactions occur in 1 (J CuGd = 0.21 cm-1 ) and 2. The antiferromagnetic interaction occurs in complex 3 with J CuGd = 0.82 cm-1 and J GdGd = 0.065 cm-1 , while dominant ferromagnetic interaction occurs in complex 4.  相似文献   

17.
The unimolecular dissociation of (CH3)2C+OC2H5 ions (I) and their deuterated analogs, generated by ion-molecule reactions (IMR) in acetone-ethyl iodide mixtures was studied by tandem mass Spectrometry methods. Two significant processes that yielded I ions were identified. The Fourier transform ion cyclotron resonance study showed that the reaction between ionized ethyl iodide and neutral acetone was the principal source of I. This process involved the formation of the stable mixed ionized dimer, [C2H5I·O=C(CH3)2] (II), which dissociated by the loss of an I atom. Other important fragmentation pathways of II were the formation of C2H5I, (CH3)2CO; and (CH3)2COI+ and the loss of CH3CHI·. The major dissociation of I was the loss of C2H4. The activation energy for this reaction was determined by metastable ion appearance energy measurements to be ~55 kJ mol?1 above the thermochemical minimum. The analysis of the metastable and collision-induced dissociation of D-labeled I showed an unusual time-energy effect on the degree of H/D mixing, with the highest selectivity for the ethene loss [β-H(D)-atom shift] being observed for ions with the lowest internal energies. Collisional excitation could not produce significant H/D mixing among dissociating ions. The results were rationalized by the existence of two species— the classical (2-ethoxypropyl) and nonclassical (proton-bound acetone-ethene pair) isomers of I. The classical structure was originally formed by IMR or from II. The energy barrier for the classical to nonclassical isomerization lay well above the thermochemical threshold for C2H4 loss, providing only limited H-atom mixing in nonclassical ions that were always formed in their dissociative state. The effect of the proton affinity of the carbonyl compound on the H/D mixing in RR′C+OC2H5 ions was studied. It was shown that the selectivity for the ethene loss (β-H-atom shift) generally increased with the increase of the proton affinity of RR′CO. Neutralization-reionization mass spectrometry was applied to a study of (CH3)2C+OR ions, where R = H, I, C2H5. The observation of a recovery signal for the ion I was attributed to the formation of the 2-ethoxypropyl radical. Neutral counterparts of (CH3)2COI+ ions were also generated, being the first example of IO-substituted alkyl radicals.  相似文献   

18.
A Co(II) complex [Co3(L)4(H2O)6] · 2Cl (I), where L is salicylaldehyde-aminoacetic acid Schiff base, was synthesized and characterized via elemental analysis, UV, and single crystal X-ray crystallography. Complex I crystallizes in the orthorhombic system, space group Pbcn with lattice parameters a = 9.569(4), b = 12.301(5), c = 36.931(14) Å, V = 4347(3) Å3, Z = 4, ρcalcd = 1.608 mg m?3. At the same time, the binding reaction between complex I and bovine serum albumin (BSA) was studied by fluorescence spectroscopy combined with UV-Vis absorption measurements under simulative physiological conditions. The results indicated that its combination reaction is mainly a static quenching process. Complex I bound BSA with a molar ratio of 1: 1 and the binding constant K A values are 3.86 × 105 L mol?1 (25°C) and 1.17 × 105 L mol?1 (36°C). The shortest binding distance r between the donor BSA and acceptor (complex I) is 2.49 nm, which affirms that complex I has partly inserted into the hydrophobic pocket of BSA.  相似文献   

19.
Two complexes are synthesized: diaquabromo(18-crown-6)rubidium [RbBr(18-crown-6)(H2O)2] (I) and triaqua(18-crown-6)barium dibromide monohydrate [Ba(18-crown-6)(H2O)3]2+ 2Br? · H2O (II). The orthorhombic structure of compound I (space group Pnma, a = 10.124 Å, b = 15.205 Å, c = 12.544 Å, Z = 4) and the monoclinic structure of compound II (space group C 2/c, a = 17.910 Å, b = 10.315 Å, c = 14.879 Å, β = 123.23°, Z = 4) are determined by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.063 (I) and 0.042 (II) for all 2293 (I) and 3363 (II) independent measured reflections (CAD-4 automated diffractometer, λMoK α). The complex molecule [RbBr(18-crown-6)(H2O)2] in compound I and the randomly disordered cation [Ba(18-crown-6)(H2O)3]2+ in compound II are of the host-guest type: their Rb+ or Ba2+ cation (its coordination number is nine) is located in the cavity of the 18-crown-6 ligand and coordinated by all six O atoms. In structure I, the coordination polyhedron of Rb+ is a distorted hexagonal pyramid with a triple apex at the Br? ligand and two O atoms of the water molecules. In structure II, the Ba2+ polyhedron is a distorted hexagonal bipyramid with one apex at the O atom of the water molecule and the other split apex at two O atoms of water molecules.  相似文献   

20.
Two new coordination polymers, [Pb(IDPT)2(NO3)2] (I) and [Mn(IDPT)(SO4)(H2O)2] (II) (IDPT = imidazo[4,5-f][1,10]phenanthroline), were synthesized by hydrothermal method and characterized by elemental analysis and single-crystal X-ray diffraction technique. The results reveal that the complex I belongs to monoclinic crystal system, space group C2/c and complex II belongs to monoclinic crystal system, P21/c space group. The cell parameters are: a = 19.1970(13), b = 7.3875(5), c = 17.3825(12) Å, β = 100.47(10)°, V = 2424.0(3) Å3, Z = 4, F(000) = 1488 for I; a = 10.9135(6), b = 7.0230(4), c = 19.7034(10) Å, β = 99.32(10)°, V = 1490.25(14) Å3, Z = 4, F(000) = 828 for II. In the structure of complex I, the metal center Pb(II) is six-coordinated, displays an octahedral geometry. Each molecule is further connected with neighboring one via π-π interactions into 1D chain. In complex II, Mn(II) is six-coordinated to form a distorted octahedral geometry. Compound II displays 1D supramolecular chain formed through hydrogen bonds. Additionally, the fluorescent properties for the complexes were investigated. Complexes I and II exhibit strong photoluminescence with emission maximum at 583 and 529 nm at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号