首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The geometrical, electronic and vibrational properties of pure (Al2O3)n (n = 9, 10, 12, 15) clusters and Ni-doped (Al2O3)9-10 clusters are investigated by density functional theory. There are four different Ni-doped (Al2O3)9 clusters and one Ni-doped (Al2O3)10 cluster taken into account. Compared with the pure clusters, the Ni-doped (Al2O3)9-10 clusters have narrower HOMO-LUMO energy gaps. The results indicate that the impurity of Ni atom is mainly responsible for the reduction of the HOMO-LUMO energy gap. One characteristic vibration band at about 1030 cm−1 is found in the vibrational frequencies of the Ni-doped (Al2O3)9-10 clusters, which is caused by the asymmetric Al-O-Al stretching vibration. Another band at around 826 cm−1 involving the characteristic vibration of Ni-O bond is in good agreement with experimental results.  相似文献   

2.
The adsorption of the two butane isomers on Pt(1 0 0) has been characterised with use of density functional simulations. The adsorption energies corresponding to various adsorption configurations were evaluated in good agreement with experimental values. Limited changes of the molecular structure were evidenced. The C-H bond length increases at a degree depending on the surface-hydrogen distance, while the C-C bond length remains similar to that of the free molecule. The surface on-top Pt sites exert a preferential attraction on the molecule, probably through the interaction with the H atoms. The local density of states curves around H as well as C of the adsorbed molecules show dispersed states below the metal Fermi level indicating a molecule-Pt mixing demonstrating a chemical interaction.  相似文献   

3.
The adsorption of sulfur dioxide molecule (SO2) on Li atom deposited on the surfaces of metal oxide MgO (1 0 0) on both anionic and defect (Fs-center) sites located on various geometrical defects (terrace, edge and corner) has been studied using density functional theory (DFT) in combination with embedded cluster model. The adsorption energy (Eads) of SO2 molecule (S-atom down as well as O-atom down) in different positions on both of O−2 and Fs sites is considered. The spin density (SD) distribution due to the presence of Li atom is discussed. The geometrical optimizations have been done for the additive materials and MgO substrate surfaces (terrace, edge and corner). The oxygen vacancy formation energies have been evaluated for MgO substrate surfaces. The ionization potential (IP) for defect free and defect containing of the MgO surfaces has been calculated. The adsorption properties of SO2 are analyzed in terms of the Eads, the electron donation (basicity), the elongation of S-O bond length and the atomic charges on adsorbed materials. The presence of the Li atom increases the catalytic effect of the anionic O−2 site of MgO substrate surfaces (converted from physisorption to chemisorption). On the other hand, the presence of the Li atom decreases the catalytic effect of the Fs-site of MgO substrate surfaces. Generally, the SO2 molecule is strongly adsorbed (chemisorption) on the MgO substrate surfaces containing Fs-center.  相似文献   

4.
A quantum modeling of the CO adsorption on illuminated anatase TiO2 (0 0 1) is presented. The calculated adsorption energy and geometries of illuminated case are compared with the ground state case. The calculations were achieved by using DFT formalism and the BH and HLYP. Upon photoexcitation, an electron-hole pair is generated. Comparing of natural population in the ground state and the exited state, shows that an electron is trapped in a Ti4+ ion and a hole is localized in an oxygen ion. The photoelectron helps generation of a CO2 molecule on the TiO2 surface. As shown by optimization of these systems, the CO molecule adsorbed vertically on the TiO2 (0 0 1) surface in the ground state case while the CO molecule made an angle of 134.3° to this surface at the excited state case. Based on the here used model the obtained adsorption energy was 0.36 eV which is in excellent agreement with the reported experimental value. In the present work the C-O stretch IR frequencies are calculated which are 1366.53 and 1423.16 cm−1. These results are in good agreement with the earlier reported works for the surface carbonaceous compounds, and oxygenated carbon species.  相似文献   

5.
There are many areas in the world where the ground water has been contaminated by arsenic. TiO2 is one of the most promising materials that can remove arsenic from groundwater supplies by the adsorption-based processes. The TiO2 surface is capable of photo-catalytic oxidation (PCO) changing the arsenite [As(III)] to arsenate [As(V)] which is more easily absorbed by the surface, increasing the efficiency of the process. In this paper, a density functional theory calculation has been performed to investigate the adsorption of As(III) on a perfect TiO2 anatase (1 0 1) surface. All the As(III) solution species such as H3AsO3, H2AsO3, HAsO32− and AsO33− are put onto the surface with many different possible attitudes to obtain the adsorption energy. Based on the adsorption energy and the concentration of H3AsO3, H2AsO3, HAsO32− and AsO33− in an aqueous solution, the bidentate binuclear (BB) adsorption configurations of H2AsO3 on the surface are more favorable at low As(III) concentrations, whereas BB form and monodentate mononuclear (MM) form may coexist at higher concentrations. By calculating H2AsO3 co-adsorption with water and oxygen, we can confirm the deep acceptor character of an adsorbed O2 molecule which implies that surface superoxide (or hydroperoxyl radical) plays an important role during the PCO process of As(III) on TiO2 surface.  相似文献   

6.
The atomic configurations, bonding characteristics, and electronic structures of the N-adsorbed (directly and substitutionally) SrTiO3(0 0 1) surface are studied by using first-principles method based on the density functional theory. From the analysis of the energetics and density of states, it is found that the stability of the directly adsorbed N depends on the relative position of N atom to the surface. To better understand the effects of the substitutionally adsorbed N on the surface, as an example, the behavior of Au atoms adsorbed on the N-substituted surface is discussed in detail. There is clearly a synergy effect between the substitution of N for Os(I) and the adsorption of Au atoms on the SrTiO3(0 0 1) surface.  相似文献   

7.
The adsorption of NO molecule on the LaFeO3 (0 1 0) surface was studied using first-principle calculations based on density functional theory. The calculated results indicate that the Fe-top site is the most favorable for NO adsorption. The N-O bond length, Mulliken charge, and the N-O vibration frequency of the NO molecule are discussed after adsorption. The analysis results of the density of the states show that when NO is adsorbed with the Fe-NO configuration, the bonding mechanism is mainly from the interaction between the NO and the Fe d orbit.  相似文献   

8.
Yuguang Ma 《Surface science》2009,603(2):349-23777
Surface segregation of Pt3M (M = Fe, Co, and Ni) alloys under oxygen environment has been examined using periodic density functional theory. The segregation trend at a (1 1 1) surface is found to be substantially modified by the adsorbed oxygen. Our calculations indicate that under 1/4 monolayer O coverage both the Pt-segregated and M-segregated surfaces are less stable than the non-segregated one. Further analysis reveals that segregation energy under adsorption environments can be expressed as the sum of the segregation energy under vacuum conditions and the adsorption energy difference of the segregated and non-segregated alloy systems. Therefore, the surface segregation trend under adsorption conditions is directly correlated to the surface-adsorbate binding strength.  相似文献   

9.
Density functional theory (DFT) slab calculations, mainly using the generalised gradient approximation, have been used to investigate the minimum energy structures of molecular SO2 and SO3 on Cu(1 1 1) and Ni(1 1 1) surfaces. On Ni(1 1 1) the optimal local adsorption structures are in close agreement with experimental results for both molecular species obtained using the X-ray standing wavefield technique, although for adsorbed SO2 the energetic difference between two alternative lateral positions of the lying-down molecule on the surface is marginally significant. On Cu(1 1 1) the results for adsorbed SO2, in particular, were sensitive to the DFT functional used in the calculations, but in all cases failed to reproduce the experimentally-established preference for adsorption with the molecular plane perpendicular to the surface. This result is discussed in the context of previously published DFT results for these species adsorbed on Cu(1 0 0). The optimal geometry found for SO3 on Cu(1 1 1) is similar to that on Ni(1 1 1), providing agreement with experiment regarding the molecular orientation but not the adsorption site.  相似文献   

10.
The adsorption process of silane (SiH4) on a SiGe(0 0 1) surface has been investigated by using infrared absorption spectroscopy in a multiple internal reflection geometry. We have observed that SiH4 dissociatively adsorbs on a SiGe(0 0 1) surface at room temperature to generate Si and Ge hydrides. The dissociation of Si- and Ge-hydride species is found to strongly depend on the Ge concentration of the SiGe crystal. At a low Ge concentration of 9%, Si monohydride (SiH) and dihydride (SiH2) are preferentially produced as compared to the higher Si hydride, SiH3. At higher Ge concentrations of 19%, 36%, on the other hand, monohydrides of SiH and GeH and trihyderide SiH3 are favorably generated at the initial stage of the adsorption. We interpret that when SiH4 adsorbs on the SiGe surface, hydrogen atoms released from the SiH4 molecule stick onto Ge or Si sites to produce Si or Ge monohydrides and the remaining fragments of -SiH3 adsorb both on Si and Ge sites. The SiH3 species is readily decomposed to lower hydrides of SiH and SiH2 by releasing H atoms at low Ge concentrations of 0% and 9%, while the decomposition is suppressed by Ge in cases of 19% and 36%.  相似文献   

11.
CH4 dehydrogenation on Rh(1 1 1), Rh(1 1 0) and Rh(1 0 0) surfaces has been investigated by using density functional theory (DFT) slab calculations. On the basis of energy analysis, the preferred adsorption sites of CHx (x = 0-4) and H species on Rh(1 1 1), Rh(1 1 0) and Rh(1 0 0) surfaces are located, respectively. Then, the stable co-adsorption configurations of CHx (x = 0-3) and H are obtained. Further, the kinetic results of CH4 dehydrogenation show that on Rh(1 1 1) and Rh(1 0 0) surfaces, CH is the most abundant species for CH4 dissociation; on Rh(1 1 0) surface, CH2 is the most abundant species, our results suggest that Rh catalyst can resist the carbon deposition in the CH4 dehydrogenation. Finally, results of thermodynamic and kinetic show that CH4 dehydrogenation on Rh(1 0 0) surface is the most preferable reaction pathway in comparison with that on Rh(1 1 1) and Rh(1 1 0) surfaces.  相似文献   

12.
The interactions between endohedrally doped N@C60 molecules and the Si(1 0 0) surface have been explored via ab initio total energy calculations. Configurations which have the cage located upon the dimer row bonded to two dimers (r2) and within the dimer trench bonded to four dimers (t4) have been investigated, as these have previously been found to be the most stable for the C60 molecule. We have investigated the differences between the adsorption of the C60 and N@C60 molecules upon the Si(1 0 0) surface and found that there are only minimal differences. Two interesting cases are the r2g and t4d configurations, as they both exhibit differences that are not present in the other configurations. These subtle differences have been explored in-depth. It is shown that the effects on the endohedral nitrogen atom, due to its placement within the fullerene cage, are small. Bader analysis has been used to explore differences between the C60 and N@C60 molecules.  相似文献   

13.
The adsorption of several atomic (H, O, N, S, and C) and molecular (N2, HCN, CO, NO, and NH3) species and molecular fragments (CN, CNH2, NH2, NH, CH3, CH2, CH, HNO, NOH, and OH) on the (1 1 1) facet of platinum, an important industrial and fuel cell catalyst, was studied using self-consistent periodic density functional theory (DFT-GGA) calculations at a coverage of 1/4 ML. The best binding site, energy, and position, as well as an estimated diffusion barrier, of each species were determined. The binding strength for all the species can be ordered as follows: N2 < NH3 < HCN < NO < CO < CH3 < OH < NH2 < H < CN < NH < O < HNO < CH2 < NOH < CNH2 < N < S < CH < C. Although the atomic species generally preferred fcc sites, there was no clear trend in site preference by the molecular species or molecular fragments. The vibrational frequencies of all the stable adsorbates in their best and second best adsorption sites were calculated and found to be in good agreement with experimental values reported in the literature. Finally, the decomposition thermochemistry of NOH, HNO, NO, NH3, N2, CO, and CH3 was analyzed.  相似文献   

14.
采用密度泛函理论和slab模型,研究NH3在Ni单原子层覆盖的Pt(111)和WC(001)表面上的物理与化学行为,计算了Ni单原子覆盖表面的电子结构以及NH3的吸附与分解.表面覆盖的单原子层中,Ni原子的性质与Ni(111)面上的Ni原子明显不同.与Ni(111)相比,Ni/Pt(111)和Ni/WC(001)表面上Ni原子dz2轨道上的电子更多地转移到了其它位置,该轨道上电荷密度降低有利于NH3吸附.在Ni/Pt(111)和Ni/WC(001)面上NH3吸附能均大于Ni(111),NH3分子第一个N-H键断裂的活化能则明显比Ni(111)面上低,有利于NH3的分解,吸附能增大使NH3在Ni/Pt(111)和Ni/WC(001)面上更倾向于分解,而不是脱附.N2分子的生成是NH3分解的速控步骤,该反应能垒较高,说明N2分子只有在较高温度下才能生成.WC与Pt性质相似,但Ni/Pt(111)和Ni/WC(001)的电子结构还是有差异的,与Ni(111)表面相比,NH3在Ni/Pt(111)表面上分解速控步骤的能垒降低,而在Ni/WC(001)上却升高.要获得活性好且便宜的催化剂,需要对Ni/WC(001)表面做进一步改进,降低N2分子生成步骤的活化能.  相似文献   

15.
M. Neef  K. Doll 《Surface science》2006,600(5):1085-1092
The adsorption of CO on the Cu(1 1 1) surface has been studied with ab initio density functional theory. The adsorbate-metal system was analyzed with the local density approximation, the gradient corrected functional of Perdew and Wang and the B3LYP hybrid functional, for comparison. A slab model was used for the pattern at a coverage of 1/3. The local density approximation and the gradient corrected functional give the fcc site as the favorable adsorption site. In contrast, the B3LYP functional results in the preference of the top site, in agreement with the experiment. These results confirm the suggested explanation for the failure of standard functionals, based on the position of the highest occupied and lowest unoccupied molecular orbital. The results of total energy calculations are presented, together with projected densities of states and Mulliken populations. In addition, the basis set superposition error is discussed for CO/Cu(1 1 1) and for CO/Pt(1 1 1).  相似文献   

16.
Adsorption of methanol on clean Pd(1 1 0) and on an alloyed Ag/Pd(1 1 0) surface has been studied by high-resolution photoelectron spectroscopy. On Pd(1 1 0) two different chemisorbed methanol species were observed for temperatures up to 200 K, with the one at lower binding energy remaining at low coverage. These species were attributed to methanol adsorbed in two different adsorption sites on the Pd(1 1 0) surface. As is well established for this system, heating to 250 K resulted in decomposition of methanol into CO. The adsorption and decomposition behaviour of methanol on the Ag/Pd(1 1 0) surface alloy formed by depositing Ag on Pd(1 1 0) at elevated temperature was similar to that of the pure Pd(1 1 0) surface. This suggests that the amount of Ag present in the Pd(1 1 0) surface in this study does not affect the decomposition behaviour of methanol as compared to pure Pd(1 1 0). Complementary density functional theory calculations also show little influence of Ag on the binding of methanol to Pd. These calculations predict an on-top adsorption site for low methanol coverages.  相似文献   

17.
The structures and energetics of the chemisorbed CO2, CHx species and H as well as C2H4 on the α-Mo2C(0 0 0 1) surface have been computed at the GGA-RPBE level of density functional theory. It is found that CO2 adsorbs dissociately into CO and O, in agreement with the experimental finding. The adsorbed O, CHx and H species prefer the site of three surface molybdenum atoms over a second layer carbon atom (VC site). On the basis of the calculated adsorption energies of CHx and H, the sequential dehydrogenation of CH4 and the C/C coupling reaction of CHx have been discussed.  相似文献   

18.
The adsorption properties of CO molecules adsorbed on Ni, Pd, Cu and Ag atoms deposited on O2−, F and F+ sites of MgO, CaO, SrO and BaO terrace surfaces have been studied by means of density functional calculations and embedded cluster model. The examined clusters were embedded in the simulated Coulomb fields that closely approximate the Madelung fields of the host surfaces. The adsorption properties of CO have been analyzed with reference to the basicity of the oxide support, bond order conservation energy, pairwise and non-pairwise additivity, associative adsorption, electrostatic potentials, and orbital interactions. CO adsorption on an oxide support is drastically enhanced when CO is adsorbed on a metal deposited on this support. A dramatic change is found, and explained, when one compares the CO binding energy to O2− and F sites. The formation of a strong bond at the support-metal interface has a considerable consequence on the metal-CO binding energy. The binding of CO is dominated by the metal-CO pairwise additive term, and the non-additivity term increases with increasing the basicity of the support. While the classical contributions to the electrostatic interactions are quite similar for the deposited metals, they are quite dissimilar when going from defect-free to defect-containing surfaces. The adsorption properties correlate linearly with the basicity and energy gaps of the oxide support where the electrostatic potential generated by the oxide modifies the physical and chemical properties of the adsorbed metal and therefore its reactivity versus the CO adsorbate.  相似文献   

19.
The interaction of 1,3-butadiene, 1-butene and 2-cis/trans-butenes on the Pt(1 1 1) and Pd(1 1 1) surfaces has been studied with density functional theory methods (DFT). The same most stable adsorption modes have been found on both metal surfaces with similar adsorption energies. For 1,3-butadiene the 1,2,3,4-tetra-σ adsorption structure is shown to be the most stable one, in competition with a 1,4-metallacycle-type mode, which is only less stable by 10-12 kJ mol−1. On Pt(1 1 1) these total energy calculations were combined with simulations of the vibrational spectra. This confirms that the 1,2,3,4-tetra-σ adsorption is the most probable adsorption structure, but cannot exclude the 1,4-metallacycle as a minority species. Although similar in type and energy, the adsorption on the Pd(1 1 1) surface shows a markedly different geometry, with a smaller molecular distortion upon adsorption. The most stable adsorption structure for the butene isomers is the di-σ-mode. Similarly to the case of the 1,3-butadiene, the adsorption geometry is closer to the gas phase one on Pd than on Pt, hence explaining the different spectroscopic results, without the previously assumed requirement of a different binding mode. Moreover the present study has shown that the different selectivity observed on Pt(1 1 1) and Pd(1 1 1) for the hydrogenation reaction of butadiene cannot be satisfactory explained by the single comparison of the relative stabilities of 1,3-butadiene and 1-butene on these metals.  相似文献   

20.
The adsorption energies of intermediates in CO methanation on the modified Ni3Al(1 1 1) surface and the Ni(1 1 1) surface are calculated using density functional theory. A microkinetic analysis based on the calculated adsorption energies is performed to explain the different kinetics of CO methanation catalyzed by Ni3Al and Ni powders. The electronic structures of different atoms on the modified Ni3Al surface are also presented, and correlate well with the adsorption energies and geometries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号