首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ZnO-Al2O3 nanocomposite thin films were prepared by sol-gel technique. The room temperature synthesis was mainly based on the successful peptization of boehmite (AlO(OH)) and Al(OH)3 compounds, so as to use it as matrix to confine ZnO nanoparticles. The relative molar concentrations of xZnO to (1 − x) Al2O3 were varied as x = 0.1, 0.2 and 0.5. The optical absorption spectra of the thin films showed intense UV absorption peaks with long tails of variable absorption in the visible region of the spectra. The ZnO-Al2O3 nanocomposites thin films were doped with MgO by varying its molar concentrations as y = 0.05, 0.75, 0.1, 0.125, 0.15 and 0.2 with respect to the ZnO present in the composite. The MgO doped thin films showed suppression of the intense absorption peaks that was previously attained for undoped samples. The disappearance of the absorption peaks was analyzed in terms of the crystalline features and lattice defects in the nanocomposite system. The bulk absorption edge, which is reportedly found at 3.37 eV, was shifted to 5.44 eV (for y = 0.05), 5.63 eV (for y = 0.075) and maximum to 5.77 eV (for y = 0.1). In contrast, beyond the concentration, y = 0.1 the absorption edges were moved to 5.67 eV (for y = 0.125), 5.61 eV (for y = 0.15) and to 5.49 eV (for y = 0.2). This trend was explained in terms of the Burstein-Moss shift of the absorption edges.  相似文献   

2.
The conducting oxides solid solutions of Cd1+xIn2−2xSnxO4 (x=0.1, 0.3, 0.5, 0.7, 1.0) were prepared via a solid state reaction method. The band gaps were estimated to be 2.4 eV for x=1.0, 2.5 eV for x=0.7, 2.6 eV for x=0.5, 2.7 eV for x=0.3 and 2.8 eV for x=0.1. Oxygen could be evolved over Cd2SnO4 under the irradiation of Xe-lamp or even visible light (λ>420 nm), while the others could only work in the UV-light range. Raman showed the cation distribution in Cd2SnO4 is ordered, while that in the others is disordered. The cations distribution was proposed to be the cause of the difference in photocatalytic O2-evolution activities.  相似文献   

3.
We report the study of structural, optical and magnetic properties of (1−x)ZnO–xMgO (x=0.35, 0.40, 0.45 and 0.50) composites prepared by solid state reaction method. X-ray diffraction pattern confirms the presence of both the phases associated with ZnO (hexagonal) and MgO (cubic), which is revealed through the existence of (1 1 1) and (2 0 0) peaks in addition to ZnO peaks. The lattice parameter c as calculated using X-ray analysis undergoes shrinkage with increasing content of MgO. Microstructural analysis suggests that there is no variation in spherical elongated shape of grains with increasing concentration of MgO, where the average grain size is found to be ∼600 nm. The band gap as calculated from optical absorption spectra obtained by diffuse reflectance method recorded at room temperature is tuned from 3.16 to 3.55 eV. Photoluminescence spectra consist of near band edge UV emission (389 nm) and defect level emission (503 nm). The increase of MgO concentration leads to blue shift of UV emission peaks. The magnetic measurements conducted using SQUID at 5 K temperature reveals ferromagnetism along with paramagnetic and superparamagnetic components. Saturation magnetisation (Ms) is observed to be enhanced with MgO doping.  相似文献   

4.
FexCo100-x (x=100, 65, 50 at%) epitaxial thin films were prepared on MgO(1 1 0) single-crystal substrates heated at 300 °C by ultra-high vacuum molecular beam epitaxy. The film structure and the growth mechanism are discussed. FeCo(2 1 1) films with bcc structure grow epitaxially on MgO(1 1 0) substrates with two types of variants whose orientations are rotated around the film normal by 180° each other for all compositions. FexCo100-x film growth follows the Volmer Weber mode. X-ray diffraction analysis indicates the out-of-plane and the in-plane lattice spacings are in agreement with the values of respective bulk FexCo100-x crystals with very small errors less than ±0.4%, suggesting the strains in the films are very small. High-resolution cross-sectional transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the film at the Fe50Co50/MgO interface along the MgO[1 1¯ 0] direction. The presence of such periodical dislocations decreases the large lattice mismatch of about −17% existing at the FeCo/MgO interface along the MgO[1 1¯ 0] direction.  相似文献   

5.
Molybdenum nitride Mo2Nx films were grown on MgO(0 0 1) and on α-Al2O3(0 0 1) substrates by molecular beam epitaxy under nitrogen radical irradiation. X-ray photoelectron spectroscopy revealed that the composition of the film varied in the range of Mo2N1.4-Mo2N2.8 depending on the growth temperature. The deposition at 973 K gave well-crystallized films on both substrates. The high-resolution reciprocal space mapping by X-ray diffraction showed that the nitrogen-rich γ-Mo2N crystalline phase (the composition: Mo2N1.4) was epitaxially grown on MgO at 923 K with a slight tetragonal distortion (a = 0.421 and c = 0.418 nm) to fit the MgO lattice (a = 0.421 nm). On α-Al2O3(0 0 1), nitrogen-rich γ-Mo2N (Mo2N1.8) was grown at 973 K with (1 1 1) planes parallel to the substrate surface. X-ray diffraction analysis with a multi-axes diffractometer revealed that the γ-Mo2N on α-Al2O3(0 0 1) had a slight rhombohedral distortion (a = 0.4173(2) and α = 90.46(3)°). Superconductivity was observed below 2.8-3 K for the films grown at 973 K on MgO and on α-Al2O3(0 0 1).  相似文献   

6.
We have investigated the temperature and composition dependent photoluminescence (PL) spectra in Ga1−xMnxN layers (where x ≈ 0.1-0.8%) grown on sapphire (0 0 0 1) substrates using the plasma-enhanced molecular beam epitaxy technique. The efficient PL is peaked in the red (1.86 eV), yellow (2.34 eV), and blue (3.29 eV) spectral range. The band-gap energy of the Ga1−xMnxN layers decreased with increasing temperature and manganese composition. The band-gap energy of the Ga1−xMnxN layers was modeled by the Varshni equation and the parameters were determined to be α = 2.3 × 10−4, 2.7 × 10−4, 3.4 × 10−4 eV/K and β = 210, 210, and 230 K for the manganese composition x = 0.1%, 0.2%, and 0.8%, respectively. As the Mn concentration in the Ga1−xMnxN layers increased, the temperature dependence of the band-gap energy was clearly reduced.  相似文献   

7.
The interaction of 1,2-diaminoethane (DAE) with ZnO thin films prepared by electrodeposition and magnetron sputtering was investigated by X-ray photoelectron spectroscopy (XPS). The samples were exposed to organic solution of 0.5 M DAE-p-xylene in an Ar atmosphere glove box (O2 and H2O <5 ppm), directly connected to the XPS analysis chamber by an anaerobic and anhydrous transfer system. A clear interaction of DAE with the ZnO surface is evidenced by the presence of a high intensity N1s peak at BE = 399.5 ± 0.2 eV and C1s at BE = 286.3 ± 0.2 eV which are attributed to C-N bonding. The atomic ratio C:N was very close to 1:1 consistent with the molecular, non-dissociative adsorption of DAE on the ZnO layer. No significant difference in adsorption of DAE was observed for three different ZnO surfaces despite slight differences in their acid/base properties as evidenced by the O/OH ratio. The results are interpreted in terms of adsorption on Brönsted acid sites. A uniform layer model was used to approximate the DAE film thickness, which was found to be around 10 Å on three studied samples. The N1s and C1sB signals were observed to decrease on sample exposure to vacuum and/or X-ray irradiation and additional N1sB peak appeared at lower binding energy at around 398.5 ± 0.2 eV. This is interpreted by the desorption and modification of DAE, indicating low stability of the adsorbed state on ZnO. The exposure to water of the sample with adsorbed DAE causes a significant decrease of the N1sA and C1sB peak intensities attributed to the adsorbed DAE molecule, demonstrating the instability of the DAE-ZnO interface in water.  相似文献   

8.
Four manganite samples of the series, (La1/3Sm2/3)2/3SrxBa0.33−xMnO3, with x=0.0, 0.1, 0.2 and 0.33, were investigated by X-band (∼9.5 GHz) electron paramagnetic resonance (EPR) in the temperature range 4-300 K. The temperature dependences of EPR lines and linewidths of the samples with x=0.0, 0.1 and 0.2, containing Ba2+ ions, exhibit similar behavior, all characterized by the transition temperatures (TC) to ferromagnetic states in the 110-150 K range. However, the sample with x=0.33 (containing no Ba2+ ions) is characterized by a much higher TC=205 K. This is due to significant structural changes effected by the substitution of Ba2+ ions by Sr2+ ions. There is an evidence of exchange narrowing of EPR lines near Tmin, where the linewidth exhibits the minimum. Further, a correlation between the temperature dependence of the EPR linewidth and conductivity is observed in all samples, ascribed to the influence of small-polaron hopping conductivity in the paramagnetic state. The peak-to-peak EPR linewidth was fitted to ΔBpp(T)=ΔBpp,min+A/Texp(−Ea/kBT), with Ea=0.09 eV for x=0.0, 0.1 and 0.2 and Ea=0.25 eV for x=0.33. From the published resistivity data, fitted here to σ(T)∝1/T exp(−Eσ/kBT), the value of Eσ, the activation energy, was found to be Eσ=0.18 eV for samples with x=0.0, 0.1 and 0.2 and Eσ=0.25 eV for the sample with x=0.33. The differences in the values of Ea and Eσ in the samples with x= 0.0, 0.1and 0.2 and x=0.33 has been ascribed to the differences in the flip-flop and spin-hopping rates. The presence of Griffiths phase for the samples with x=0.1 and 0.2 is indicated; it is characterized by coexistence of ferromagnetic nanostructures (ferrons) and paramagnetic phase, attributed to electronic phase separation.  相似文献   

9.
Electron paramagnetic resonance (EPR) and infrared (IR) spectroscopy were used to study the formation of ruthenium and adsorbed species appearing on the catalyst during O2, NO, and CO adsorption at room temperature on 1 wt% Ru/MgF2 catalysts prepared from Ru3(CO)12 . Both EPR and IR results provided clear evidence for the interaction between surface ruthenium and probe molecules. No EPR signals due to ruthenium (Ru) species were recorded at 300 and 77 K after H2-reduction of the catalyst at 673 K. However, at 4.2 K a very weak EPR spectrum due to low-spin (4d5) Ru3+ complexes was detected. A weak anisotropic O2- radicals signal with g∣∣=2.017 and g=2.003 superimposed on a broad (ΔBpp=120 mT), slightly asymmetric line at g=2.45(1) was identified after O2 admission to the reduced sample. Adsorption of NO gives only a broad, Gaussian-shaped EPR line at g=2.43(1) indicating that the admission of NO, similarly to O2 adsorption, brings about an oxidation of Ru species in the course of the NO decomposition reaction. Introduction of NO over the CO preadsorbed catalyst leads to EPR spectrum with parameters g=1.996, g∣∣=1.895, and AN=2.9 mT assigned to surface NO species associated with Ru ions. The IR spectra recorded after adsorption of NO or CO probe molecules showed the bands in the range of frequency characteristic of ruthenium nitrosyl, nitro, and nitrate/nitrite species and the bands characteristic of ruthenium mono-and multicarbonyls, respectively. Addition of CO after NO admission to the catalyst leads to appearance in the IR spectrum, beside the ones characteristic of NO adsorption, the bands which can be attributed to Ru-CO2 and Ru-NCO species, indicating that the reaction between NO and CO occurs. These species were also detected after CO adsorption followed by NO adsorption, additionally to the band at 1850 cm−1 being due to cis-type species.  相似文献   

10.
Pb1−2y/3LayZrxTi1−xO3 (PLZT) thin films have been prepared “in situ” by multi-target sputtering on Silicon, LaAlO3 (LAO) and MgO substrates covered with a Pt bottom electrode. The purpose was to grow tetragonal PLZT films (Zr/Ti = 28/72 with different La contents) on these various substrates and to compare their electrical properties. To this aim, Pt was first deposited on the three different substrates to get (1 1 1)Pt/Si, (1 1 1)Pt/LAO and (2 0 0)Pt/MgO. Then PLZT was deposited in a same run on these three kinds of substrates and the influence of La contents and film orientation on electrical properties was investigated. The La content was varied from y = 0 to y = 32 in order to explore the phase transition between ferroelectric and paraelectric phases as a function of the substrate. For large amount of Lanthanum, relaxor behavior has been observed and studied.  相似文献   

11.
Ga2(1−x)In2xO3 thin films with different indium content x [In/(Ga + In) atomic ratio] were prepared on α-Al2O3 (0 0 0 1) substrates by the metal organic chemical vapor deposition (MOCVD). The structural and optical properties of the Ga2(1−x)In2xO3 films were investigated in detail. Microstructure analysis revealed that the film deposited with composition x = 0.2 was polycrystalline structure and the sample prepared with x up to 0.8 exhibited single crystalline structure of In2O3. The optical band gap of the films varied with increasing Ga content from 3.72 to 4.58 eV. The average transmittance for the films in the visible range was over 90%.  相似文献   

12.
Zn1−xCoxO (0 ≤ x ≤ 0.15) thin films grown on Si (1 0 0) substrates were prepared by a sol-gel technique. The effects of Co doped on the structural, optical properties and surface chemical valence states of the Zn1−xCoxO (0 ≤ x ≤ 0.15) films were investigated by X-ray diffraction (XRD), ultraviolet-visible spectrometer and X-ray photoelectron spectroscopy (XPS). XRD results show that the Zn1−xCoxO films retained a hexagonal crystal structure of ZnO with better c-axis preferred orientation compared to the undoped ZnO films. The optical absorption spectra suggest that the optical band-gap of the Zn1−xCoxO thin films varied from 3.26 to 2.79 eV with increasing Co content from x = 0 to x = 0.15. XPS studies show the possible oxidation states of Co in Zn1−xCoxO (0 ≤ x ≤ 0.05), Zn0.90Co0.10O and Zn0.85Co0.15O are CoO, Co3O4 and Co2O3, with an increase of Co content, respectively.  相似文献   

13.
The nano-structured Fe(III)-doped TiO2 photocatalysts with anatase phase have been developed for the oxidation of non-biodegradable different organic dyes like methyl orange (MO), rhodamine B (RB), thymol blue (TB) and bromocresol green (BG) using UV-Hg-lamp. The different compositions of FexTi1−xO2 (x = 0.005, 0.01, 0.05, and 0.1) nanocatalysts synthesized by chemical method (CM), have been characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra, specific surface area (BET), transmission electronic microscopy (TEM) analysis, XPS, ESR and zeta potential. From XRD analysis, the results indicate that all the compositions of Fe(III) doped in TiO2 catalysts gives only anatase phase not rutile phase. For complete degradation of all the solutions of the dyes (MO, RB, TB, and BG), the composition with x = 0.005 is more photoactive compared all other compositions of FexTi1−xO2, and degussa P25. The decolorization rate of different dyes decreases as Fe(III) concentration in TiO2 increases. The energy band gap of Fe(III)-doped TiO2 is found to be 2.38 eV. The oxidation state of iron has been found to be 3+ from XPS and ESR show that Fe3+ is in low spin state.  相似文献   

14.
The charging processes and methanol oxidation that occur during the oxidation-reduction cycles in a ruthenium oxide thin film electrode (deposited by the sol-gel method on Pt covered quartz crystals) were investigated by using cyclic voltammetry, chronoamperometry and electrochemical quartz crystal nanobalance techniques. The ruthenium oxide rutile phase structure was determined by X-ray diffraction analysis. The results obtained during the charging of rutile ruthenium oxide films indicate that in the anodic sweep the transition from Ru(II) to Ru(VI) occurs followed by proton de-intercalation. In the cathodic sweep, electron injection occurs followed by proton intercalation, leading to Ru(II). The proton intercalation/de-intercalation processes can be inferred from the mass/charge relationship which gives a slope close to 1 g mol−1 (multiplied by the Faraday constant) corresponding to the molar mass of hydrogen. From the chronoamperometric measurements, charge and mass saturation of the RuO2 thin films was observed (440 ng cm−2) during the charging processes, which is related to the total number of active sites in these films. Using the electrochemical quartz crystal nanobalance technique to study the methanol oxidation reaction at these films was possible to demonstrate that bulk oxidation occurs without the formation of strongly adsorbed intermediates such as COads, demonstrating that Pt electrodes modified by ruthenium oxide particles can be promising catalysts for the methanol oxidation as already shown in the literature.  相似文献   

15.
We report the 11B and 195Pt NMR measurements in non-centrosymmetric superconductors Li2(Pd1−xPtx)3B (x = 0.0, 0.2, 0.5, 1.0). From the measurements of spin–lattice relaxation time (T1), we found that there was a coherence peak (CP) just below superconducting transition temperature (Tc) for x = 0–0.5 but no CP in x = 1. We demonstrated that the system for x = 0–0.5 were BCS superconductors but there existed line node in the superconducting gap for x = 1.0. The 195Pt Knight Shift in x = 0.2 decreased below Tc, indicating spin-singlet state. The results showed that BCS superconducting state evolves into an exotic state with line-nodes in the gap function when x is increased, as the spin–orbit coupling is enhanced.  相似文献   

16.
Modifications in the structural and optical properties of 100 MeV Ni7+ ions irradiated cobalt doped ZnO thin films (Zn1−xCoxO, x = 0.05) prepared by sol-gel route were studied. The films irradiated with a fluence of 1 × 1013 ions/cm2 were single phase and show improved crystalline structure with preferred C-axis orientation as revealed from XRD analysis. Effects of irradiation on bond structure of thin films were studied by FTIR spectroscopy. The spectrum shows no change in bonding structure of Zn-O after irradiation. Improved quality of films is further supported by FTIR studies. Optical properties of the pristine and irradiated samples have been determined by using UV-vis spectroscopic technique. Optical absorption spectra show an appreciable red shift in the band gap of irradiated Zn1−xCoxO thin film due to sp-d interaction between Co2+ ions and ZnO band electrons. Transmission spectra show absorption band edges at 1.8 eV, 2.05 eV and 2.18 eV corresponding to d-d transition of Co2+ ions in tetrahedral field of ZnO. The AFM study shows a slight increase in grain size and surface roughness of the thin films after irradiation.  相似文献   

17.
The heavy-fermion compound URu2Si2 has mystified researchers since the superconducting state (Tc = 1.45 K) is embedded within the enigmatic ‘‘hidden order” phase (Th = 17.5 K). Here, we report charge and thermal transport measurements on ultraclean single crystals of URu2Si2 with very large residual-resistivity-ratio down to 30 m K (∼Tc/50), which reveal a number of unprecedented superconducting properties. The results provide strong evidence for a new type of unconventional superconductivity with two distinct gaps having different nodal topology. We propose a gap function with chiral d-wave form Δ(k) = Δ0kz(kx + iky). We also demonstrate that a distinct flux line lattice melting transition with outstanding characters occurs well below the upper critical fields even at sub-Kelvin temperature. The intriguing superconducting state of URu2Si2 adds a unique and exciting example to the list of unconventional superconductors.  相似文献   

18.
Lithium borate (LiB) glasses in the system (100−x)B2O3-xLi2O with x=20, 30, 40, 50, 60 and 70 mol% were prepared. The glasses were doped with different concentrations of the order of 10−1, 10−2, 10−3, 10−4 and 10−5 of MgO and their thermoluminescent (TL) response was investigated. The irradiations were performed using γ rays from a 60Co source in the dose range from 0.1 to 25 kGy. The material displayed good sensitivity for γ-rays and intensity of TL signals is dependent on γ-ray dose and Li2O content. For each dose level and investigated temperature range (50-350 °C), exactly single isolated glow peak appears in the temperature range of 165-205 °C depending on both Li2O concentrations and time of exposure. The shape of the glow peak has altered significantly with increase in the gamma ray dose or Li2O concentrations. The glass composition with x=50 mol% doped with 10−3 mol% of MgO presented the best TL response. The results of the present study indicated that the recorded single and isolated high temperature peak is a good candidate for TL dosimetric investigations. This indicates that 50 B2O3-50Li2O-doped with 10−3 mol% of MgO is possibly used as materials for radiation dosimetry in the dose range of 0.1-20 kGy.  相似文献   

19.
(Fe48Pt52)100−x–(MgO)x films were used to examine the performance of a perpendicular percolated medium. Two underlayers, Pt(0 0 1)/Cr(0 0 2) and MgO(0 0 2), were used for comparison. The (Fe48Pt52)100−x–(MgO)x film with the MgO underlayer exhibits a strong preference to segregate at FePt grain boundaries. The microstructure with small closely packed MgO particles (2–4 nm) dispersed uniformly in the L10 FePt matrix was achieved in the Pt/Cr underlayered sample. Structural data reveal that the precipitate is crystallographically coherent with the surrounding L10 FePt phase and preserves good lattice alignment. Magnetic results indicate significant pinning behavior for those introduced non-magnetic columns with an enhanced coercivity of about 70%—much greater than that of the MgO underlayered samples. Percolated perpendicular medium can be realized in the FePt system and a Pt(0 0 1)/Cr(0 0 2) underlayer promotes the formation of pinning sites within the FePt grains.  相似文献   

20.
Parameters of the electric quadrupole interaction for the first excited state (E=89.7 keV) of 99Ru nuclei for a number of the cubic Laves phase compounds Ce1−xLaxRu2, synthesized at high pressure, were determined by the perturbed angular γγ-correlation method. Compounds were synthesized at 8 GPa. It was revealed that the decrease of the average valence of a rare earth ion, caused by the substitution of La for Ce, results in the monotonous decrease of the quadrupole frequency νQ from 43.3 MHz for CeRu2 to 33.1 MHz for LaRu2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号