首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we report on the structural characterisation of Ni and Ni/Ti bilayer contacts on n-type 4H-SiC. The redistribution of carbon, after annealing, in the Ni/SiC and the Ni/Ti/SiC contacts is particularly studied by RBS at 3.2 MeV, XRD and AES techniques.  相似文献   

2.
The interface formation, electrical properties and the surface morphology of multilayered Ta/Ni/Ta/SiC contacts were reported in this study. It was found that the conducting behavior of the contacts so fabricated is much dependent on the metal layer thickness and the subsequent annealing temperature. Auger electron spectroscopy (AES) and X-ray diffraction analyses revealed that Ni2Si and TaC formed as a result of the annealing. The Ni atoms diffused downward to metal/SiC interface and converted into Ni2Si layer in adjacent to the SiC substrate. The released carbon atoms reacted with Ta atoms to form TaC layer. Ohmic contacts with specific contact resistivity as low as 3 × 10−4 Ω cm2 have been achieved after thermal annealing. The formation of carbon vacancies at the Ni2Si/SiC interface, probably created by dissociation of SiC and formation of TaC during thermal annealing, should be responsible for the ohmic formation of the annealed Ta/Ni/Ta contacts. The addition of Ta into the Ni metallization scheme to n-SiC restricted the accumulation of carbon atoms left behind during Ni2Si formation, improving the electrical and microstructure properties.  相似文献   

3.
Excitation functions and angular distributions of58Ni+58Ni and58Ni+62Ni scattering at energies just above the Coulomb barrier have been measured aroundθ cm=90° in energy stepsΔE cm=0.25 MeV fromE cm ? 110 MeV toE cm ? 120 MeV for58Ni+58Ni and fromE cm ? 110 MeV toE cm ? 118 MeV for58Ni+62Ni. Evidence for structure of non-statistical character has been found in the angle-summed excitation functions; this evidence is corroborated by the analysis of the angular distributions. This is the first time that non-statistical structure in elastic and inelastic scattering is reported with high confidence level for this mass and excitation energy ranges. Attempts are presented to understand the nature of this structure, including the presence of intermediate dinuclear states and virtual states in a potential well.  相似文献   

4.
The use of a TiB2 diffusion barrier for Ni/Au contacts on p-GaN is reported. The annealing temperature (25-950 °C) dependence of ohmic contact characteristics using a Ni/Au/TiB2/Ti/Au metallization scheme deposited by sputtering were investigated by contact resistance measurements and auger electron spectroscopy (AES). The as-deposited contacts are rectifying and transition to ohmic behavior for annealing at ≥500 °C . A minimum specific contact resistivity of ∼3 × 10−4 Ω cm−2 was obtained after annealing over a broad range of temperatures (800-950 °C for 60 s). The contact morphology became considerably rougher at the higher end of this temperature range. AES profiling showed significant Ti and Ni outdiffusion through the TiB2 at 800 °C. By 900 °C the Ti was almost completely removed to the surface, where it became oxidized. Use of the TiB2 diffusion barrier produces superior thermal stability compared to the more common Ni/Au, whose morphology degrades significantly above 500 °C.  相似文献   

5.
The annealing temperature dependence of contact resistance and layer stability of ZrB2/Ti/Au and Ni/Au/ZrB2/Ti/Au Ohmic contacts on p-GaN is reported. The as-deposited contacts are rectifying and transition to Ohmic behavior for annealing at ≥750 °C, a significant improvement in thermal stability compared to the conventional Ni/Au Ohmic contact on p-GaN, which is stable only to <600 °C. A minimum specific contact resistance of ∼2 × 10−3 Ω cm−2 was obtained for the ZrB2/Ti/Au after annealing at 800 °C while for Ni/Au/ZrB2/Ti/Au the minimum value was 10−4 Ω cm−2 at 900 °C. Auger Electron Spectroscopy profiling showed significant Ti, Ni and Zr out diffusion at 750 °C in the Ni/Au/ZrB2/Ti/Au while the Ti and Zr intermix at 900 °C in the ZrB2/Ti/Au. These boride-based contacts show promise for contacts to p-GaN in high temperature applications.  相似文献   

6.
Ni, Ni2Si and Pd contacts were prepared on n-type 4H-SiC and annealed in the temperature range of 750-1150 °C. The annealed contacts were analyzed before and after acid etching, and different features were found in unetched and etched contacts. Carbon left on the SiC surface after the acid etching of Ni2Si contacts annealed at 960 °C was highly graphitized. In nickel contacts, the graphitization of interface carbon began at 960 °C and increased after annealing at higher temperatures. In palladium contacts, the onset of the interface carbon graphitization was observed after annealing at 1150 °C. For all three types of metallization, the minimal values of contact resistivity were achieved only when the sharp first-order peak at 1585 cm−1 and distinct second-order peak at ∼2700 cm−1 related to the presence of graphitized carbon were detected by Raman spectroscopy after the acid etching of contacts. The properties of unannealed secondary contacts deposited onto etched primary contacts were similar to the properties of the primary contacts unless carbon was selectively etched. The results show that ohmic behavior of Ni-based and Pd contacts on n-type SiC originates from the formation of graphitic carbon at the interface with SiC.  相似文献   

7.
CH4 dissociation on Ni surfaces, which is important in CH4 reforming reactions, was discussed by using density functional theory. It was found that the CHx species were changed to anions after chemisorption. The site preference of CHx (x = 0-3) species on Ni(1 1 1), Ni(1 0 0) and Ni(1 1 0) was located on the basis of the computed chemisorption energies. Ni(1 0 0) is the most preferred surface for CH4 dissociation, compared to Ni(1 1 0) and the widely investigated Ni(1 1 1).  相似文献   

8.
The exchange bias (EB) effect has been studied in Ni/NiO nanogranular samples obtained by annealing in H2, at selected temperatures (200≤Tann≤300 °C), NiO powder previously milled for 5, 10, 20 and 30 h. Both the as-milled NiO powders and the Ni/NiO samples have been analyzed by X-ray diffraction and the exchange bias properties have been investigated in the 5-200 K temperature range. The structure and the composition of the Ni/NiO samples can be satisfactorily controlled during the synthesis procedure by varying both Tann and the milling time of the precursor NiO powders. In particular, by increasing this last parameter, the mean grain size of the NiO phase reduces down to the final value of 16 nm and the microstrain increases, which is consistent with an enhancement of the structural disorder. The structure of the milled NiO matrix strongly affects the process of nucleation and growth of the Ni nanocrystallites induced by the H2 treatments, so that, Tann being equal, the amount and the mean grain size DNi of the Ni phase vary substantially in samples having different milling times. Such features of the Ni phase determine the extent of the Ni/NiO interface and consequently the magnitude of the exchange field Hex: the highest value (∼940 Oe) has been measured at T=5 K in a sample containing ∼7 wt% Ni and with DNi=19 nm. However, in Ni/NiO samples with very different structural characteristics and different values of Hex at T=5 K, the EB effect vanishes at the same temperature (∼200 K) and the same thermal dependence of Hex is observed. We consider that the evolution of the EB effect with temperature is ultimately determined by the microstructure of the Ni/NiO interface, which cannot be substantially modified by changing the synthesis parameters, milling time and Tann.  相似文献   

9.
The heights of Schottky barriers at contacts of Ag, Au, Pd, Pt, Ti, Ru, Ni, Cr, Al, Mg, and Mn metals with different polytypes of silicon carbide SiC are self-consistently calculated in the framework of a simple model proposed earlier. The results of calculations performed for contacts of transition metals with silicon carbide polytypes are in quite reasonable agreement with experimental data under the assumption that silicon vacancies with an energy Ed=EV+2.1 eV make a dominant contribution to the Schottky barrier height.  相似文献   

10.
Positron annihilation spectroscopy (PAS) lifetime study was applied in the evaluation of the microstructure parameters and degradation processes of nuclear reactor pressure vessel (RPV) steel surveillance specimens. Study was oriented to the material investigation of Russian WWER-1000 steels (15Kh2MNFAA and 12Kh2N2MAA) with higher Ni content (1.26 wt.% in base metal and 1.7 wt.% in weld). For comparison, the WWER-440 weld metal (Sv10KhMFT) without Ni was measured too. Specimens were studied in as received stage, after irradiation in LVR-15 experimental reactor to the neutron fluence F(E > 0.5 MeV) = 4 × 1023 m−2 s−1 and after annealing in vacuum at 475 °C/2 h. Post-irradiation thermal treatment and annealing of defects was well detected by different PAS techniques. It was observed that the sensitivity of PAS parameters to defined irradiation treatment decreases with Ni-content increase. Results confirm the hypothesis that Ni affects size (decrease) and distribution (more homogeneous) of the Cu- and P-rich clusters and MxCx carbides.  相似文献   

11.
The thermal evolution of deuterium from thin titanium films, prepared under UHV conditions and deuterated in situ at room temperature, has been studied by means of thermal desorption mass spectrometry (TDMS) and a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The observed Ti film thickness dependent morphology was found to play a crucial role in the titanium deuteride (TiDy) film formation and its decomposition at elevated temperatures. TDMS heating induced decomposition of fine-grained thin Ti films, of 10-20 nm thickness, proceeds at low temperature (maximum peak temperature Tm about 500 K) and its kinetics is dominated by a low energy desorption (ED = 0.61 eV) of deuterium from surface and subsurface areas of the Ti film. The origin of this process is discussed as an intermediate decomposition state towards recombinative desorption of molecular deuterium. The TiDy bulk phase decomposition becomes dominant in the kinetics of deuterium evolution from thicker TiDy films. The dominant TDMS peak at approx. Tm = 670 K, attributed to this process, is characterized by ED = 1.49 eV.  相似文献   

12.
The ac conductivity measurements have been carried out for the activated Ba/SrO cathode with additional 5% Ni powder for every 100 h acceleration life time at the temperature around 1125 K. The ac conductivity was studied as a function of temperature in the range 300-1200 K after conversion and activation of the cathode at 1200 K for 1 h in two cathodes face to face closed configuration. The experimental results prove that the hopping conductivity dominate in the temperature range 625-770 K through the traps of the WO3 associate with activation energy Ea = 0.87 eV, whereas from 500-625 K it is most likely to be through the traps of the Al2O3 with activation energy of Ea = 1.05 eV. The hopping conductivity at the low temperature range 300-500 K is based on Ni powder link with some Ba contaminants in the oxide layer stricture which indicates very low activation energy Ea = 0.06 eV.  相似文献   

13.
Silicon carbide (SiC), as it is well-known, is inaccessible to usual methods of technological processing. Consequently, it is important to search for alternative technologies of processing SiC, including laser processing, and to study the accompanying physical processes. The work deals with the investigation of pulsed laser radiation influence on the surface of 6H-SiC crystal. The calculated temperature profile of SiC under laser irradiation is shown. Structural changes in surface and near-surface layers of SiC were studied by atomic force microscopy images, photoluminescence, Raman spectra and field emission current-voltage characteristics of initial and irradiated surfaces. It is shown that the cone-shaped nanostructures with typical dimension of 100-200 nm height and 5-10 nm width at the edge are formed on SiC surface under nitrogen laser exposure (λ = 0.337 μm, tp = 7 ns, Ep = 1.5 mJ). The average values of threshold energy density 〈Wthn〉 at which formation of nanostructures starts on the 0 0 0 1 and surfaces of n-type 6H-SiC(N), nitrogen concentration nN ≅ 2 × 1018 cm−3, are determined to be 3.5 J/cm2 and 3.0 J/cm2, respectively. The field emission appeared only after laser irradiation of the surface at threshold voltage of 1000 V at currents from 0.7 μA to 0.7 mA. The main role of the thermogradient effect in the processes of mass transfer in prior to ablation stages of nanostructure formation under UV laser irradiation (LI) was determined. We ascertained that the residual tensile stresses appear on SiC surface as a result of laser microablation. The nanostructures obtained could be applied in the field of sensor and emitting extreme electronic devices.  相似文献   

14.
Hybrid of humic acid (HA) and chitin has been synthesized and the hybrid material (chitin-HA) was then applied as sorbent to adsorb Ni(II). The HA was extracted from peat soil of Gambut District, South Kalimantan, Indonesia, according to the procedure recommended by IHSS (International Humic Substances Society). The chitin was isolated from crab shell waste of sea food restaurants through deproteination using NaOH 3.5% (w/v) and followed by removal of inorganic impurities using HCl 1 M. The synthesis of chitin-HA was performed by reacting gelatinous chitin solution in HCl 0.5 M and HA solution in NaOH 0.5 M. Parameters investigated in this work consists of effect of medium acidity on the sorption, sorption rate (ks) and desorption rate (kd) constants, Langmuir (monolayer) and Freundlich (multilayer) sorption capacities, and energy (E) of sorption. The ks and kd were determined according to a kinetic model of first order sorption reaching equilibrium, monolayer sorption capacity (b) and energy (E) were determined according to the Langmuir isotherm model, and multilayer sorption capacity (B) was determined based on the Freundlich isotherm model.Sorption of Ni(II) on both chitin and chitin-HA was maximum at pH 8.0. The kinetic expression resulted from the proposed kinetic model has been shown to be more applicable than the commonly known Lagergren equation obtained from the pseudo-first order sorption model. The application of the proposed model revealed that the presence of HA increased the ks from 0.018 min−1 for chitin to 0.031 min−1 for chitin-HA. As for ks, the value of b was also bigger in the presence of HA, i.e. 7.42 × 10−5 mol/g for chitin and 9.93 × 10−5 mol/g for the chitin-HA. Unlike ks and b, the value of E slightly decreased from 23.23 to 21.51 kJ/mol for the absence and presence of HA, respectively. It can also be deduced that the presence of HA on chitin contributed more to the additional layer of Ni(II) sorbed on sorbent. Without HA, B for chitin was only 6.17 times higher than b, while with the presence of HA, the enhancement of the sorption capacity from the multilayer (B) to the monolayer (b) was 19.40. The increase of ks, b, B, and the decrease of E would be very benefit in the real application of chitin-HA for the recovery of Ni(II) from aqueous samples.  相似文献   

15.
The specific contact resistivity and chemical intermixing of Ti/Au and Ti/Al/Pt/Au Ohmic contacts on n-type Zn0.05Cd0.95O layers grown on ZnO buffer layers on GaN/sapphire templates is reported as a function of annealing temperature in the range 200-600 °C. A minimum contact resistivity of 2.3 × 10−4 Ω cm2 was obtained at 500 °C for Ti/Al/Pt/Au and 1.6 × 10−4 Ω cm2 was obtained at 450 °C for Ti/Al. These values also correspond to the minima in transfer resistance for the contacts. The Ti/Al/Pt/Au contacts show far smoother morphologies after annealing even at 600 °C, whereas the Ti/Au contacts show a reacted appearance after 350 °C anneals. In the former case, Pt and Al outdiffusion is significant at 450 °C, whereas in the latter case the onset of Ti and Zn outdiffusion is evident at the same temperature. The improvement in contact resistance with annealing is suggested to occur through formation of TiOx phases that induce oxygen vacancies in the ZnCdO.  相似文献   

16.
In this work, we study the effect of the thickness and porous structure of silicon carbide (PSC) layers on the electrical properties of Schottky photodiodes by using a palladium (Pd) layer deposited on non-porous silicon carbide (SiC) and porous-SiC (PSC) layers. The non-porous and porous-SiC layers were realized on a p-type silicon (Si(1 0 0)) substrate by pulsed laser deposition using a KrF laser (248 nm) and thermal deposition of a thin Pd layer. The porous structure of the SiC layer deposited was developed by an electrochemical (anodization) method. The electrical measurements were made at room temperature (295 K) in an air ambience. The effect of the porous surface structure and the thickness of the SiC layer were investigated by evaluating electrical parameters such as the ideality factor (n) and barrier height (?Bp). The thickness of the porous layer significantly affects the electrical properties of the Schottky photodiodes. Analysis of current-voltage (I-V) characteristics showed that the forward current might be described by a classical thermal emission theory. The ideality factor determined by the I-V characteristics was found to be dependent on the SiC thickness a value For a thin SiC layer (0.16 μm) n was around 1.325 with a barrier height 0.798 eV, while for a thick layer (1.6 μm), n and ?Bp were 1.026 and 0.890 eV, respectively for Pd/SiC-pSi. These results indicate Schottky photodiodes with high performance are obtained for thicker SiC layer and for thin layer of PSC. This effect showed the uniformity of the SiC layer. In the same case the ideality factor (n) decreases for Pd/PSC-pSi(1 0 0) for low SiC thickness by report of Pd/PSC-pSi(1 0 0) Schottky photodiodes, but for Pd/PSC-pSi(1 0 0) n increase for large SiC thickness layer. We notice that the barrier height (?Bp) was reversely depend by report of ideality factor. A spectral response value of (SR) of 34 mA/W at λ = 400 nm was measured for Pd/0.16 μm SiC-pSi Schottky photodiode with low SiC thickness. On the other hand, a value of SR = 0.14 mA/W at λ = 900 nm was obtained when we used PSC layer (Pd/PSC-pSi(1 0 0)). A reverse behaviour occurs for thicker SiC layer. Finally, it was found that the thickness and surface porous structure have strong effect on sensitivity.  相似文献   

17.
H.Y. Ho 《Surface science》2007,601(3):615-621
The initial growth and alloy formation of ultrathin Co films deposited on 1 ML Ni/Pt(1 1 1) were investigated by Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and ultraviolet photoelectron spectroscopy (UPS). A sequence of samples of dCo Co/1 ML Ni/Pt(1 1 1) (dCo = 1, 2, and 3 ML) were prepared at room temperature, and then heated up to investigate the diffusion process. The Co and Ni atoms intermix at lower annealing temperature, and Co-Ni intermixing layer diffuses into the Pt substrate to form Ni-Co-Pt alloys at higher annealing temperature. The diffusion temperatures are Co coverage dependent. The evolution of UPS with annealing temperatures also shows the formation of surface alloys. Some interesting LEED patterns of 1 ML Co/1 ML Ni/Pt(1 1 1) show the formation of ordered alloys at different annealing temperature ranges. Further studies in the Curie temperature and concentration analysis, show that the ordered alloys corresponding to different LEED patterns are NixCo1−xPt and NixCo1−xPt3. The relationship between the interface structure and magnetic properties was investigated.  相似文献   

18.
Polycrystalline CdS samples on the SnO2 coated glass substrate were obtained by vacuum evaporation method at low substrate temperatures (TS=200 and 300 K) instead of the commonly used vacuum evaporation at high substrate temperatures (TS>300 K). X-ray diffraction studies showed that the textures of the films are hexagonal with a strong (0 0 2) preferred direction. Circular Cu contacts were deposited on the upper surface of the CdS thin films at 200 K by vacuum evaporation. The effects of low substrate temperature on the current-voltage (I-V) characteristics of the Cu/CdS/SnO2 structure were investigated in the temperature range 100-300 K. The Cu/CdS (at 300 K)/SnO2 structure shows exponential current-voltage variations. However, I-V characteristics of the Cu/CdS (at 200 K)/SnO2 structure deviate from exponential behavior due to high series resistance. The diodes show non-ideal I-V behavior with an ideality factor greater than unity. The results indicate that the current transport mechanism in the Cu/CdS (at 300 K)/SnO2 structure in the whole temperature range is performed by tunneling with E00=143 meV. However, the current transport mechanism in the Cu/CdS (at 200 K)/SnO2 structure is tunneling in the range 200-300 K with E00=82 meV.  相似文献   

19.
A new molecular solid, [1-(4′-bromo-2′-fluorobenzyl)-4-dimetylaminopyridinium]-bis(maleonitriledithiolato)nickel(III), (BrFBzPyN(CH3)2(Ni(mnt)2)(1), has been prepared and characterized by elemental analyses, IR, ESI-MS spectra, single crystal X-ray diffraction and magnetic measurements. Compound 1 crystallizes in the orthorhombic space group Pnma, a=20.579(4) Å, b=7.078(1) Å, c=17.942(4) Å, α=β=γ=90°, V=2613.3(9) Å3, Z=4. The Ni(III) ions of 1 form a quasi-one-dimensional Zigzag magnetic chain within a Ni(mnt)2 column through Ni?S, S?S, Ni?Ni, or π?π interactions with an Ni?Ni distance of 4.227 Å. Magnetic susceptibility measurements in the temperature range 2-300 K show that 1 exhibits a spin-gap transition around 200 K, and antiferromagnetic interaction in the high-temperature phase (HT) and spin gap in the low-temperature phase (LT). The transition for 1 is second-order phase transition as determined by DSC analyses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号